
Nicholas Tomlinson

Network Anomaly Discovery

Computer Science Tripos

Robinson College

May 16, 2012

Proforma

Name Nicholas Tomlinson
College Robinson College
Project Title Network Anomaly Discovery
Examination Computer Science Tripos Part II, 2012
Word Count1 11918
Project Originator Nicholas Tomlinson
Supervisors David Evans and Malcolm Scott

Original Aims of the Project

My project will discover anomalous behaviour of a computer network by
analysis of traffic reaching an end machine, and by sensibly selected genera-
tion of traffic from this machine (for example, traceroutes). This would be
done by constructing a framework with which specific anomalies could be
recognised, and other functionality provided. It should be noted that, since
the project is intended to be run on an end machine rather than elsewhere
in the network, anomalies centre largely around the machine in question.
For example, the detection of port scanning would typically be a port scan
against the particular machine running the program.

Work Completed

I have implemented a modular framework and set of modules for performing
real time analysis of traffic on a computer network. The system runs on
a typical end user machine and is able to identify several different network
anomalies. This work has been completed with all of the basic functionality
specified despite the very open ended nature of the problem, and the large
number of ways in which it could be designed. The modularity of the project
does, of course, mean there is great scope to take the project much further.

Special Difficulties

None

1 Estimated using catdvi counted.dvi | wc -w – counted.dvi includes chapters 1
through 5 only.

iii

Declaration of Originality

I Nicholas Tomlinson of Robinson College, being a candidate for Part II of
the Computer Science Tripos, hereby declare that this dissertation and the
work described in it are my own work, unaided except as may be specified
below, and that the dissertation does not contain material that has already
been used to any substantial extent for a comparable purpose.

Signed

Date

iv

Contents

Cover Sheet i

Proforma iii

Declaration of Originality iv

Table of Contents v

1 Introduction 1
1.1 History . 2
1.2 Previous Work . 2
1.3 General Relation to Computer Science 3

2 Preparation 5
2.1 Requirements Analysis . 5

2.1.1 Definition of an Anomaly 5
2.1.2 Possible Identifiable Anomalies 6

2.2 Development Process . 7
2.2.1 Development Model . 7
2.2.2 Design Paradigms and Choice of Language 8
2.2.3 Testing . 8

2.3 Preparatory Study . 9
2.3.1 Documentation . 9
2.3.2 Experimentation . 9

3 Implementation 11
3.1 System Architecture . 11

3.1.1 Components . 12
3.1.2 Event Subscription Graph 13

3.2 External Code and Tools . 16
3.3 Framework . 16

3.3.1 Event System . 16

v

3.3.2 Configuration . 18

3.3.3 Dynamic Values . 19

3.3.4 Binary Data Buffer . 20

3.3.5 Persistent Storage . 21

3.3.6 Error Reporting . 21

3.3.7 Finite State Machine 21

3.3.8 Sockets . 22

3.3.9 Time and Timers . 22

3.4 Modules . 23

3.4.1 Address Resolution Protocol 23

3.4.2 Ethernet . 24

3.4.3 Internet Control Message Protocol 24

3.4.4 Internet Protocol Version 4 24

3.4.5 Logging . 24

3.4.6 Port Scan . 25

3.4.7 Resource Monitor . 25

3.4.8 Sniffer . 25

3.4.9 Named Pipe Testing 26

3.4.10 Traceroute . 26

3.4.11 Transmission Control Protocol 27

3.4.12 User Datagram Protocol 27

3.5 Summary . 27

4 Evaluation 29

4.1 Detection of Anomalies . 29

4.1.1 Unusual Traceroute Path 29

4.1.2 Hop Time . 29

4.1.3 Port Scanning . 30

4.1.4 Unusual Packets . 30

4.2 CPU and Memory Requirements 30

4.3 Traffic Generated . 33

4.3.1 Traceroute . 33

4.3.2 Trade Offs . 34

4.4 Modularity and Extendability 35

4.4.1 Ease of Extension . 35

4.5 Summary . 37

5 Conclusions 39

5.1 Future Work . 39

5.2 Final Words . 40

vi

Bibliography 41

Appendices 45
A Anomalous Traceroute Output 45
B High RTT Output . 47
C Port Scan Output . 49
D Unusual Packet Output . 51
E The Pirate Bay Interception 53

Project Proposal 1

vii

viii

Chapter 1

Introduction

This dissertation describes a project designed to discover anomalous be-
haviour of a computer network1. In many cases, this anomalous behaviour
may be malicious – such as described below, but this may not always be the
case. As observed by my project supervisor, Dr David Evans, this project is
at its most general an attempt to discover information about a computer net-
work from the incomplete information available to an end machine. It is this
attempt to discover information from an unprivileged position on the net-
work (but with administrative access to the local machine) in an unobtrusive
way that makes this project interesting.

Note here: “an unprivileged position”! As discussed in Section 1.2, in-
trusion detection systems (IDSs) already exist that are designed to run in
the core of a network – but few systems exist that are designed to detect
malicious operation of the network from the perspective of a normal user’s
machine, and even fewer that are prepared to use active techniques to inves-
tigate the network. It is also important to note that not all anomalies are
outright malicious, although clearly some are. They may be as innocuous
as control traffic that was not anticipated, or simply be the result of incor-
rect configuration. Indeed, many anomalies have been discovered during the
development of the system that were entirely benign.

Towards the end of the production of this dissertation, Virgin Media
(who provide my home Internet connection) were ordered by a UK court to
block access to The Pirate Bay. This served as a good real world example of
my project in action. This interception was detected first time without any
modification to the system. Appendix E demonstrates this.

This project has successfully implemented a system to perform passive
and active analysis of network traffic, and is able to establish the presence

1 The definition of an anomaly in the context of this project anomaly is given in
Section 2.1.1.

1

2 CHAPTER 1. INTRODUCTION

of several anomalies. This dissertation concerns itself with how this was
accomplished, and why it was accomplished in this way.

1.1 History

I first became interested in the detection of network anomalies in Decem-
ber 2008 when the Internet Watch Foundation (IWF) attempted to block
the Wikipedia page on the Scorpions album “Virgin Killer” in what proved
to be a rather conspicuous way2[21][19]. I have made a number of interest-
ing observations about the system employed by Virgin Media, both during
this original incident, and subsequently3. Several UK ISPs, including Virgin
Media, redirect traffic in a way similar to a system known as CleanFeed.
CleanFeed operates by intercepting specific IP addresses for filtering with
an HTTP proxy[18]. The HTTP proxy is then able to block specific URLs
rather than entire domain names or IP addresses. This is, of course, only
one example of anomalous network behaviour that I would like to be able to
detect.

1.2 Previous Work

There has been much work in the area of IDSs such as Snort[15] that are run
by network administrators on nodes within the network, as well as on firewalls
that are designed to run on end user systems. IDSs are intended to permit
the network administrator (but often not users of the network, such as home
ISP users) to monitor the network for traffic that may indicate a security
issue, or use of the network outside the organization’s use policy. Firewalls
are predominantly intended to detect and block attacks (such as a port scan)
targeted at the specific machine, and provide security by reducing the number
of services visible to the network. In general, such firewalls are passive and
make little or no attempt to identify traffic that does not represent a direct

2 In particular, the majority of Wikipedia traffic from the UK originated from one of a
small number of HTTP proxies, forcing Wikipedia’s administrators to disable anonymous
editing from these IP addresses, and as a result from the majority of UK users. It is
interesting to analyse the precise way in which this attempt at censorship was achieved,
as it appears quite poorly implemented in many cases.

3 Some high profile sites with user submitted content, for example one click file sharing
systems, often seem to appear in the IWF’s list. This became evident upon analysis of
the data I gathered in an attempt to use machine learning for HTTP fingerprinting. It
has also previously been observed that (at the time of the observation) at least 25% of the
IWF’s list of redirected sites are legitimate file hosting sites[20].

1.3. GENERAL RELATION TO COMPUTER SCIENCE 3

attack on the local machine. They will not, for example, highlight evidence
of traffic that has been intercepted, as described in Section 1.1. Traditional
IDSs that run within the network provide little reassurance to the user that
does not trust the competence or intentions of the network administrator. In
cases where an IDS is run on the user’s end system, it will typically also be
passive.

1.3 General Relation to Computer Science

In addition to the previous work discussed in Section 1.2, this project has re-
lations to many areas of Computer Science and the Computer Science Tripos
– most notably Computer Networking, Security I, Principles of Communica-
tion, and Security II. In addition to these topics, the Software Engineering,
Object Oriented Programming, and Software Design courses are relevant to
any project of this size.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preparation

This chapter of the dissertation discusses what had to be learned before
implementation of the project could begin. It should be noted that, while
some of the design could be appropriately placed in this chapter, this is
discussed in Chapter 3.

2.1 Requirements Analysis

This section discusses what the project should be able to do upon completion.
The most obvious objective is to be able to identify a number of different
anomalous behaviours that may be present on a computer network. There is
a huge variety of different anomalies that one could seek to detect; it is clearly
not practical to attempt to implement them all in a Part II project. Therefore
I will aim to implement a selection of suitable anomalies to demonstrate the
working of my project. The project should be designed in a modular way –
allowing additional anomalies (and other functionality to be discussed later)
to be easily added. The project should be capable of running on a machine
with limited resources – such as a typical laptop of a few years ago, and
without generating unacceptable traffic.

2.1.1 Definition of an Anomaly

In the context of this project, an anomaly is any unexpected observable
behaviour of a computer network to which the end system is attached. Typ-
ically, this will be unusual or non-compliant behaviour or traffic, however
user specification may also dictate that traffic that would otherwise be con-
sidered normal is in fact anomalous, or that traffic that would normally be
considered anomalous is in fact normal. An anomaly may be likely to be ma-

5

6 CHAPTER 2. PREPARATION

licious (such as a port scan, or traffic interception), however it may also be
unintentional behaviour (such as the Ethernet frame with a six byte payload
that is occasionally produced by my phone, I believe erroneously) or just a
curiosity (such as a change in network configuration). Section 2.1.2 provides
examples of anomalies that could be detected.

2.1.2 Possible Identifiable Anomalies

This section discusses what types of network traffic we might wish to detect,
and how we might go about doing so – from a fairly high level point of view.
Let us consider how we might detect some anomalies1.

Unusual Path to Destination

If our traffic is being intercepted, it is possible that the behaviour of the net-
work will reflect the interception if the path through the network is changed
as a result. This might show up in a traceroute2. In this case, we could
examine a traceroute for evidence of interception, such as:

• The presence of a node (or subnet) we know to be involved in intercep-
tion.

• A significant difference (such as a detour) in the traceroute of addresses
we would not expect a difference to appear in. In this case, we must be
careful because the network may be legitimately configured to do this.

Unusual Hop Time

If a packet takes an unusually long time to reach a node in the network,
it may be the result of congestion or poor network configuration. This is
an example of a non-malicious anomaly. It may be revealed by timing the
responses of a traceroute, and highlighting any round trip time that is over
a specified threshold.

Port Scanning

A port scan is an attempt to determine whether any of a set of ports are
open or not – typically to find services running on the machine that could
potentially be vulnerable to exploitation[23]. The set of ports probed by

1 In fact, we discuss here the anomalies suggested in the project proposal.
2 Indeed I have observed that several ISPs exhibit this behaviour. An explanation of

tracerouting is given in Section 3.4.10.

2.2. DEVELOPMENT PROCESS 7

a port scan will often be far longer than could be reasonably explained by
accidental causes such as entering the wrong port or IP address. This case
can be detected by keeping a record of access attempts. Any machine that
attempts to access more than a set threshold of ports may be considered to
have performed a port scan.

Unusual Packet Types

Ethernet IPv4 TCP Data

Figure 2.1: An example of a TCP
packet

Computers communicating over a
computer network generally use
packets that consist of several pro-
tocols organised in a layered fash-
ion. For example, a TCP segment
might be nested in an IPv4 packet,
which might in turn be nested in an
Ethernet frame. Figure 2.1 demon-
strates this. In the case of Ethernet
and IPv4, protocols are assigned numbers[3][5]. This makes the task of iden-
tifying packet types trivial: compare the packet’s protocol number against a
list of known numbers. Many higher layers rely on the application to deter-
mine the protocol (often by conventional port number on the server, but this
cannot be relied upon[14]). Different packet types may therefore be identi-
fied. If we have a list of packet types that are usual, any packet arriving that
is not of one of those types may be considered to be unusual. Most obvi-
ously, the system could be provided with an explicit list of protocols that are
expected. A more advanced implementation could perform statistical anal-
ysis of previous traffic to identify protocols that have not previously been
encountered.

2.2 Development Process

2.2.1 Development Model

In line with good software engineering principles, I plan to adopt a devel-
opment model that is suitable to a project of this nature, and the resources
available to me. The model chosen should have scope for a single person to
experiment with the system and change it in response to difficulties or ideas
that are discovered during development. There should also be scope for good
software engineering practice such as thorough testing, and clear specifica-
tion of the requirements. I have chosen the evolutionary development model

8 CHAPTER 2. PREPARATION

principally to accommodate experimentation and continual testing of small
increments – it is much easier to test a small change to a system that is known
to otherwise work than it is to leave most of the testing to the end as is typical
in the waterfall model. The specification can be gradually worked towards
and potentially amended slightly as new ideas or difficulties are encountered.

2.2.2 Design Paradigms and Choice of Language

It is helpful to break the project down into small manageable chunks; there-
fore, I intend to produce a highly modular design. To assist in this, I intend
to make use of object oriented programming. This project lends itself well
to the production of modules that are isolated from each other – except for
modules that have clear interaction (such as the IPv4 module that acquires
its data from the Ethernet module). Modules that interact with each other
should do so in a way that is consistent throughout the system, and that
makes this interaction easy to understand in the code. It will be very helpful
to devise a way to manage the complexity of how the modules are linked
together, however this is a discussion for Chapter 3.

This project does a lot of relatively low level networking tasks, and must
be able to handle a lot of data efficiently – for example, without copying
it unnecessarily. It is also desirable (though not strictly necessary) that
the project be portable across different operating systems and hardware.
In order to support the design paradigms specified in this section, I require
that the chosen language support object oriented programming to reduce the
incidental complexity, but with support for relatively low level operations.
With these criteria in mind, I have chosen C++ as the primary language of
this project.

2.2.3 Testing

Testing is an extremely important part of the development process, so it
pays to give some consideration to how it will be performed. I favour an
evolutionary development process – where features are added and tested.

Since I will be using the evolutionary development model, it is important
to ensure testing occurs throughout the development process – not just of
new parts of the system, but also of existing parts. This way, changes to the
system that might conflict with parts that have already been implemented
are discovered quickly. Fortunately, this project lends itself well to continual
testing.

I also plan to develop a number of testing tools – mechanisms to provide
simulated network traffic, tools to evaluate the resource requirements of the

2.3. PREPARATORY STUDY 9

project, and so on. These tools can be run on a regular basis to check for
regressions that occur as the result of subsequent development.

2.3 Preparatory Study

This section will detail the various tools, software libraries, documentation,
and so on that had to be learned and understood in order for this project to
be executed successfully.

2.3.1 Documentation

There will be a lot of study of documentation – for chosen tools and libraries,
and for network protocols.

Due to the nature of the project, it is necessary to be clear about what
various protocols do, how they do it, and what constitutes normal behaviour.
For many protocols on the Internet, there are publicly available RFCs (re-
quest for comments) that are the canonical documentation for how they
should be implemented3.

All of the libraries and tools used in the implementation of this project
have official documentation associated with them that explain how the tool
or library is to be used. It will be essential to familiarise myself with this
information.

2.3.2 Experimentation

Although the intended operation of a computer network is well documented,
complex systems often exhibit unanticipated behaviour, and in any case it is
the author’s observation that one of the most effective ways to learn about a
system is to interact and experiment with it. To this end, it is important to
be open minded about incorporating ideas arrived at by experimentation.

3 See the bibliography for several examples of RFCs and other standards referenced by
this project.

10 CHAPTER 2. PREPARATION

Chapter 3

Implementation

In this chapter of the dissertation, I will explain how the system has been
designed, and why it works in the way that it does. One of the continuing
threads running throughout the design is the goal of modularity and its use to
minimise the incidental complexity by allowing concepts to be implemented
at a higher level and to manage the intrinsic complexity by breaking it down
into smaller chunks. Many of the proceeding sections explain mechanisms
that are used to attain this goal.

3.1 System Architecture

This section aims to explore the design of the project. It is clear that a
project such as this can, and indeed should, be implemented in a modular
fashion.

There is a wide variety of anomalies that one could wish to detect using
this system. Therefore, I feel that modularity is key to this project. A plugin
system that uses dynamic linking can be enabled at compile time to allow
easy extension and run time configuration of used modules. Static linking
of the plugins is permitted, however, in order to allow the system to run in
a more limited environment – such as one with less storage, or one without
support for shared libraries.

The use of a plugin system with dynamic valued events1 allows for a
high degree of decoupling2. Most importantly, in most cases the inter-
dependencies between modules are described entirely by the events published

1 Events are discussed in Section 3.3.1. Dynamic values are discussed in Section 3.3.3.
2 There are a number of papers that have noted the very loose coupling produced by

event systems, or publish/subscribe systems, such as the one I propose, some examples of
which are cited[22][24][26].

11

12 CHAPTER 3. IMPLEMENTATION

and subscribed to.
This design also permits substitution of one module for another handling

and publishing the same events. For example: during testing, the sniffer
module may be replaced using a run time configuration option with a one
that provides simulated network traffic from another source. I used this
ability to write a test module to replace the sniffer with a mechanism that
interacts with a suite of Python scripts. Through doing so, I was able to
test the system with a simulated network that has behaviour I can specify
exactly, and that provides much more useful debugging information.

3.1.1 Components

Broadly speaking, this project is composed of the following:

• A set of modules for transforming the received traffic into a processed
form that is more easily understood by other modules, or for identifying
anomalous behaviour. The processed form is typically an event or
sequence of events.

• A subscription mechanism for linking the different modules to each
other. This mechanism enables the modules to communicate with each
other without imposing the rigidity of statically defining how and where
information is used in the module that produced it. This system per-
mits modules to receive information from several different modules to
cater for scenarios where information only becomes apparent from anal-
ysis of information from several sources.

• A mechanism to allow the user to configure the system. This mecha-
nism allows the user to specify information that is used to allow the
system to more precisely define what anomalous operation is and is
not (for example, by specifying that certain behaviours are not anoma-
lous in the current environment, even though they would typically be
so elsewhere). The user is also permitted to prevent the system from
exhibiting certain behaviours – such as performing traceroutes – either
by configuring the relevant module not to generate this traffic, or by
actually specifying at run time that the module should not be loaded.

• A library of data structures and algorithms that may be common be-
tween many modules. Examples include:

– Finite State Machines. These are a useful tool for implementing
many different modules (for example, TCP).

3.1. SYSTEM ARCHITECTURE 13

– An information storage mechanism. This could be responsible
for maintaining cached information which could either be com-
pared later, or used to avoid unnecessary repetition of expensive
operations. This mechanism might provide special facilities, for
example to log old data and allow it to expire in the cache. This
is implemented using SQLite and is described in Section 3.3.5.

3.1.2 Event Subscription Graph

It may be helpful to consider a first approximation design for how the system
should process data received from the network. This is a particularly impor-
tant aspect of the system, as it determines much of the overall architecture.
To that end, Figure 3.1 shows part of a graph of possible events and module
dependencies3.

The graph is a directed graph with an edge from node A to node B rep-
resenting an event that A could produce and B would receive. The diagram
is coloured to make clearer the different kinds of module. The blue nodes are
responsible for interacting with the outside world – for example writing to a
log file, or listening to the network. The green nodes are modules for recog-
nising received data. The yellow nodes generate traffic on network to gather
information about it that could not be obtained by passive methods – in this
example, by performing traceroutes. The red nodes detect anomalies4.

Of course, there is no restriction on how many modules may subscribe to
an event. Therefore, it is possible to easily add extra functionality, such as
to log how many Ethernet frames are sent and received simply by allowing
another module (in this example, a log) to receive these events. This graph
may even contain cycles to permit the processing of encapsulated packets –
for example, to permit IPv4-in-IPv4.

The subscription mechanism is in charge of maintaining the edges in this
graph so that the system can be constructed in a much more modular way
than would otherwise be achievable. Modules subscribe to events they would

3 This graph has many omissions and a few extras compared to the actual system.
It is intended to convey the ideas behind how the system could work, rather than as an
absolute reference of exactly what modules have been implemented.

4 Note: I have included “TCP/HTTP Mismatch” because it is a good example of how
an anomaly may interact with more than one module. Suppose the system were to perform
TCP fingerprinting (this would be implemented by a separate module, probably using an
existing library) to identify the probable operating system of the machine from which
the TCP stream originated. The system could compare this with any operating system
claimed or implied by the HTTP’s server header. If the two mismatch (such as Microsoft’s
IIS in a TCP stream from a Linux server), an anomaly event could be produced. I would
need to do further research before I could implement this though.

14 CHAPTER 3. IMPLEMENTATION

Sniffer/Injector

Ethernet802.11ARP

IPv4 IPv6

ICMP TCPUDP

Traceroute

ICMPv6

HTTP

TCP/HTTP MismatchUnexpected Traceroute

Figure 3.1: Partial Event Graph

3.1. SYSTEM ARCHITECTURE 15

like to receive using the subscription mechanism. This enables a new module
to be added to the system without making changes to other parts of the
system that would otherwise be necessary to link the new module in. The
key here is to ensure this subscription mechanism is sufficiently flexible to
accommodate an event model that provides tidy linking of loosely coupled
modules. It becomes clear that a good implementation of this subscription
mechanism is important.

This graph omits one important module – the logging module. The log-
ging module subscribes to every event, and so any module that emits an
event interacts with the logging module.

As an example, if a UDP in IPv4 in Ethernet packet is received, the
sniffer would produce an Ethernet frame received event. Since the Ethernet
module subscribes to Ethernet frame received events, this would be processed
by the Ethernet module, which would then produce an IPv4 packet received
event (as well as an Ethernet type 0x08005 packet received event). The IPv4
module (which subscribes to the IPv4 received event) would process this
packet, and produce a UDP packet received event which will be processed
by the UDP module.

To continue the example to demonstrate how the system is capable of
sending data, suppose the IP address of the received packet is one that has
not previously been encountered. The traceroute module would produce a
send ICMP event. The send ICMP event contains a template send IPv4
event. When the ICMP module receives the send ICMP event, it uses the
template send IPv4 event to produce a completed send IPv4 event with the
payload data set to be an ICMP packet constructed from the send ICMP
event’s values. The IPv4 module receives the send IPv4 event, produces a
layer 2 payload (much as the ICMP module produced an IPv4 payload),
and sends an ARP send event. The ARP module receives the ARP send
event, and looks up the Ethernet address for the IP address in the event.
It produces an Ethernet send event with the appropriate Ethernet address.
This approach is taken over sending layer 3 packets6 in order to allow the
system to remain independent of the operating system. This is particularly
relevant if we use the system to detect anomalous behaviour of the local
machine, however this is an extension to the project that is discussed in
Chapter 5.

5 Ethernet type 0x0800 tells the network stack that the protocol of the Ethernet packet’s
payload is IPv4[3].

6 The standard sockets interface allows a program to open an IPv4 socket – specifying
the protocol used, rather than a TCP or UDP socket.

16 CHAPTER 3. IMPLEMENTATION

3.2 External Code and Tools

This project has provided several opportunities to make use of external tools
and libraries. This section documents which external libraries were chosen,
and why.

PCRE[8] is used for the processing of regular expressions. Regular expres-
sions are a powerful way to allow the user to configure which events should
be logged and presented. They also represent a useful mechanism to im-
plement recognition and processing of protocols such as HTTP. PCRE was
chosen as it is a well used (and hence well tested) library, and uses regular
expressions of a form that is widely understood. This should make it easier
for experienced users of other tools to learn to use this system.

SQLite[16] is used to provide database support for modules that require
it. It is small enough to use on embedded platforms such as a phone or a
domestic gateway, and requires no complicated setup. The database support
is used to allow persistent storage. This is useful, for example, to detect
changes in routing over time.

Flex and Bison is used to produce the parser for the configuration file
processor. This is explained further in Section 3.3.2.

Although written by me, the error encapsulation class is (with a few
modifications) copied from other projects I have worked on in my spare time.
I have chosen to use it because I have found it provides a useful mechanism
to capture error messages from their point of origin, and display them –
optionally with debugging information. This class is explored in Section 3.3.6.

3.3 Framework

A significant part of this project is the design and construction of a framework
suitable for analysing packets, and determining the presence of anomalous
behaviour of the network. This framework provides a mechanism to allow
modular implementation of the project, a library of tools that are available
to modules, and a mechanism to allow modules to communicate effectively
with each other without the need for tight coupling. This section concerns
itself with this framework.

3.3.1 Event System

Inter-module communication is achieved through dynamically typed events.
Modules are able to subscribe to events based on their type and content.

3.3. FRAMEWORK 17

They are able to do this at run time. This allows, for example, the HTTP
module to subscribe to new data provided by a specific TCP connection.

By using dynamically typed events7 rather than statically typed events, it
is possible for the framework to provide a library of subscription factories that
may simply be reused by the modules. Further, the dynamic typing permits
modules to communicate with each other without the need for shared header
files, or the need to maintain strict binary compatibility – if a module is
updated to provide new information not used by another module, the second
module need not be recompiled or altered in any way. The disadvantage of
this is, of course, the lack of the thorough checking (of, for example, access to
event members that exist) that C++’s type system would provide. It was also
discovered during the early stages of design and implementation that trying
to use C++’s type system for inter-module communication objects leads to
a lot of very verbose code (and therefore an unnecessarily high incidental
complexity).

Event

received:ethernet sniff

data data interface

Figure 3.2: Example Event

The dynamic type allows for val-
ues that are key/value pairs. Each
event is typically a set of key/value
pairs, with each value being a fur-
ther set of key/value pairs. This
allows for compound events (with
multiple types), and event types
that may be shared between mod-
ules without the need to include
a common header in both. Fig-
ure 3.2 demonstrates an example
event. This event is a compound
event – with a received:ethernet and
a sniff event. The sniff event contains the keys: data, and interface, the val-
ues of which are not included in the diagram. Similarly, the received:ethernet
event contains the key data8.

Since events are defined by key/value pairs, it is possible for logging
modules to filter events based on their name, or the values of various fields,
based only on configuration information – without the need for the logging
module to have hard coded knowledge of possible events.

There are a number of libraries that could be used to implement a mod-
ular design such as the one proposed in the Proposal and Section 3.1.2. In

7 The dynamic type system used is described in Section 3.3.3).
8 If it appears odd that this event does not contain any Ethernet addresses, note that

this event is subscribed to by the Ethernet module. The Ethernet module produces a
processed:ethernet event.

18 CHAPTER 3. IMPLEMENTATION

particular there are a number of message oriented systems. Most of these
seem to be significantly more complex than required for my purposes, and are
largely focused on implementing distributed systems – which is not the focus
of this project. If it becomes desirable to transmit events over the network,
they could be serialised and transmitted using a TCP socket by a module in
the system.

Event handler objects subscribe to events, and nominate an event han-
dler method to be called when a subscribed event is published. Subscriptions
are handled by registering subscription objects with the event system. This
provides a more structured alternative to simply performing the desired pat-
tern matching in each event handler. This structured alternative permits
greater code reuse – including the use of data structures such as finite state
machines, and a library of useful subscription factories.

3.3.2 Configuration

The configuration mechanism allows a list of text configuration files to be
specified on the command line, and processed in order. Configuration options
in subsequent configuration files override or extend (for example, by concate-
nation) the options in previous ones. This enables information to be split
between several files (such as to enable information about known bad HTTP
headers to be in its own configuration file), and to enable common configura-
tion with specific configuration options for several different networks where
a machine is portable (or indeed to facilitate debugging).

In order to permit many different modules to use the configuration system
(and indeed to enable the configuration to specify which modules are loaded),
the configuration system uses run-time defined naming. The configuration
format also supports many of the data types supported by the dynamic values
(described in Section 3.3.3) – including lists and key/value pairs.

Unfortunately, I could not find a configuration library supporting all of
these features9, and so the writing of a custom configuration processor was
required. To write the lexer and parser, I used Flex[4], and Bison[2]. A
tree of dynamic values is created that may be accessed from any module –
modules are able to simply read values from the configuration mechanism.

This has proven to be a versatile way to allow configuration information
from several sources (such as a generic configuration for all networks the ma-
chine is typically connected to, and configuration files for specific networks)
to be easily combined.

9 libconfig[6] supports all except option overriding and extension.

3.3. FRAMEWORK 19

Type Description
Integer A 64 bit integer.
Floating point A floating point number of type ‘double’.
String A textual value.
Pointer A pointer. This is included because a few modules are

required to exchange pointers to structures that are not
suitable for conversion to a dynamic value (such as dur-
ing the process of registering a socket module with the
framework).

Binary data A ‘buffer’ object. This is described in Section 3.3.4
Event In some cases, it may be that an event should be pub-

lished at a future time. To accommodate this, the dy-
namic type supports the storage of an event.

List A list of dynamic values.
Map A set of key/value pairs where each key is of string type,

and each value is of dynamic value type.

Table 3.1: Types that may be contained within a dynamic value

3.3.3 Dynamic Values

The dynamic value class provides a common representation of data through-
out the system, and is vital to the operation of the event and configuration
systems. It contains a lot of the incidental complexity that would be removed
had a higher level language been chosen, however it has been implemented in
a way that presents this complexity only once, thereby providing the rest of
the system with the advantages of a higher level typing system, with few of
the disadvantages. A dynamic value may have any one of the types described
in Table 3.1.

It is possible to specify the formatting of the dynamic value when con-
verted to a string. This is useful to allow logging modules to automatically
produce output that is appropriately formatted without the need for prior
knowledge of how values should be represented in text, or the need to define
separate data types where only the formatting is different. An example of
its use is the representation of IPv4 addresses – which are stored in a binary
data object. The IPv4 module sets the format of the value. When events
with an IP address are displayed by a logging module, the binary data is
converted to the recognisable dotted quad notation.

The dynamic types are achieved through the use of a set of classes that
implement a specific type, and a class that represents a dynamic type, and
has a pointer to a specific type object. Although the dynamic type classes

20 CHAPTER 3. IMPLEMENTATION

are less tidy than might normally be desired, this is a consequence of placing
a significant amount of complexity in the same place. The benefit is that this
complexity is present nowhere else, and may simply be reused. The effect is
much the same as having used a higher level language such as Python – but
with the advantages of superior portability and performance. Exposed to the
rest of the program is a single dynamic type class. This class has proven to
be both suitable and convenient for communicating data within the system,
and appears to be reliable.

3.3.4 Binary Data Buffer

This structure stores arbitrary binary data in a way that takes care of memory
management. It is used in many places throughout the program to represent
binary data such as payloads, machine addresses (usually IP addresses and
MAC addresses), and so on.

The buffer class is responsible for allocating and deallocating memory
on the heap. Since buffer objects are typically allocated on the stack, the
incidental complexity of manual deallocation is removed, along with a sig-
nificant chance of memory leaks. Allocation on the stack is possible even in
cases where this would be difficult using traditional C++ stack memory –
such as where concatenation of data of unknown lengths is required. There
is little performance penalty associated with the use of the buffer class. In
fact by using reference counting, it reduces the amount of copying that must
be performed.

This structure also supports a variety of useful operations, such as con-
catenation, and endian translation10.

In order to allow in place computation of the checksum used by the IPv4
module, the algorithm specified in RFC 1071[9] is implemented in the buffer
class11.

The framework also provides a buffer into which out of order data may
be placed for reassembly. This is useful for modules like TCP that work with
potentially out of order data. Although this is currently used only by the
TCP module, it was felt that other modules might benefit from this facility
in the future – the purpose of the library being to provide a set of tools
that modules may opt to use, in addition to a set of common structures for

10 Although this could be implemented as a stand-alone function, in practice this op-
eration is performed exclusively on data stored in a buffer. It has therefore proven more
convenient to allow the buffer to provide access to data with appropriate endian transla-
tion.

11 In fact, the RFC provides a C implementation which I adapted for use in the buffer
class.

3.3. FRAMEWORK 21

communication.

3.3.5 Persistent Storage

A database class is included in the framework to allow modules to take ad-
vantage of persistent storage. The decision to include the database interface
in the library rather than as a module (that would have permitted alternate
database systems to be used more easily) has permitted sequential operations
on the database to be performed without the need for a very large number of
event subscriptions – an option that would have proven unduly inconvenient.
The database class is essentially a C++ wrapper for SQLite that makes use
of my dynamic type system. SQLite was chosen as it is a well tested library
that is suited to storing diverse medium sized data – even on relatively small
platforms. Using SQLite avoids the need to implement a completely bespoke
(and probably buggy) storage mechanism.

3.3.6 Error Reporting

The framework provides a mechanism to produce error exceptions containing
a formatted string in response to error conditions12. Occasionally an error
may signal a normal condition that requires an alternate program flow13.

The error reporting class provides a printf() like constructor that is ex-
tremely useful for providing information in error messages. Error exceptions
may be caught in one of several key places in the program – such as in the
event handling code. Processing of the packet may be halted, or the pro-
gram terminated, depending on where the error is caught (and thus where it
originally occurred).

Through the use of a macro that is usually used to call the constructor to
the error class, the file and line of an error can be included in error messages
in debugging builds of the software. This provides a versatile way to handle
error conditions within the program.

3.3.7 Finite State Machine

FSMs (finite state machines) are a useful abstraction for the implementation
of the event subscription mechanism, as well as several different modules
(such as TCP and HTTP). The classes provide a way to divide complex code

12 In fact I adapted a class I originally wrote for another project, but that I have found
useful in several others for this purpose.

13 This occurs where the type of a dynamic value must be determined by the SQLite
interface.

22 CHAPTER 3. IMPLEMENTATION

into manageable chunks, while keeping track of some of the current state
without the need for clumsy enums14. This is beneficial for good software
engineering, and has proven to work well in practice. The class extends the
notion of an FSM to provide a powerful mechanism for sharing data between
states15.

The FSM library is implemented as a set of abstract classes with methods
that should be overridden to process “characters” (a “character” is an object
of the same type as the FSM processes; often this is an event). FSM states
provide a method to process a character, returning the next state. This
method is passed data that may be shared between all of the states in the
FSM.

When a character is processed, the FSM state may perform some complex
action on the character. For example, the TCP module adds received data
to a buffer in the shared data when in a state that permits TCP to transfer
data.

3.3.8 Sockets

In order to allow several modules to be waiting for data to arrive over a
socket (or file), the framework provides a mechanism for managing sockets.
The module registers the file descriptor of the socket with the socket manager.
When the socket is available for reading, the socket manager calls a virtual
method of the socket module. The socket management is integrated with the
timers as described in Section 3.3.9.

3.3.9 Time and Timers

There are a number of modules (such as the traceroute module) that depend
on accurate timing. To accommodate this need, the framework provides a
class to represent a time – including the current time. The time class is
available as a dynamic type, as well as a stand alone class.

The class represents time as a UNIX timestamp16, but with a granularity
that may be specified at compile time17.

14 An ‘enum’ is a mechanism provided by C++ to allow the compiler to assign a unique
integer to a name that may be used as a constant in the code.

15 Although this means these are not pure FSMs, the ability of different states to access
a common object is very valuable for many tasks that are neatly represented as an FSM
with this extension.

16 A UNIX timestamp is a representation of a time that is a signed 32 bit integer number
of seconds since 1st January 1970, 00:00 UTC.

17 This solution averts a “year 2038 bug” style problem, while permitting an increase
in resolution should it be required – without hard-coding an indivisible unit of time.

3.4. MODULES 23

Further, there are a number of modules that require delayed action. This
is useful to detect, for example, timed out traceroutes. To achieve this, a
timer system is implemented that causes the socket manager to wait only a
finite period of time for a socket to become readable.

Each timer has a virtual handler method that is overridden. When a
socket becomes readable, or the specified time elapses, the timer manager
executes the handler of each expired timer. It then calculates the time until
the next timer expires, and supplies this to the socket manager.

Although this is implemented as a module that listens to events just as
any other, this is part of the library due to the unusual interaction with the
IO loop.

3.4 Modules

This section describes the modules that have been implemented. These mod-
ules make use of the framework described in Section 3.3. Most of these mod-
ules produce events that can be subscribed to by other modules. This section
also describes some of the interactions between the modules.

The project’s modules may be compiled either statically into the main
program, or as dynamically loaded modules. In the latter case, it is possible
to specify at run time which modules are loaded – for example to swap the
sniffer module for a testing module.

3.4.1 Address Resolution Protocol

The ARP (address resolution protocol) module serves two purposes. Firstly,
like any other dissection module, it allows the system to interpret the proto-
col it implements – namely ARP[13]. Secondly, ARP is the protocol which
translates IP addresses into the hardware addresses required to write traffic
onto the network over a raw socket. This module is therefore required by the
IPv4 module’s send functionality. This functionality is in turn used by, for
example, the traceroute module. When an IPv4 packet is to be sent by the
system, the IPv4 module sends an event that is recognised by the ARP mod-
ule. After determining the hardware address of the destination IP address,
the ARP module generates an event for the Ethernet module. In addition
to providing events required to detect anomalous ARP traffic, this module
provides benefits that are explained in the last paragraph of Section 3.1.2
when sending IPv4 packets.

24 CHAPTER 3. IMPLEMENTATION

3.4.2 Ethernet

This module is responsible for dissecting Ethernet packets, and for adding
Ethernet packets to IPv4 packets that are sent over the network. This is a rel-
atively simple task that uses one of the structures provided by the program’s
library to translate the EtherType18 into an Ethernet processed event.

It is worth noting that there is a standard for VLAN tagging [1] that is not
implemented by this module. Such a module could be easily implemented
to recognise the appropriate EtherType (0x8100[3]) and produce a second
Ethernet received event without the VLAN tag.

3.4.3 Internet Control Message Protocol

The ICMP (internet control message protocol) module is responsible for en-
coding and decoding ICMP packets. It is required for the traceroute to work.
It also produces anomaly events for unknown ICMP types and codes.

3.4.4 Internet Protocol Version 4

The IPv4 (Internet protocol, version 4) module is responsible for encoding
and decoding IPv4 packets. Packets may be sent via the IPv4 module as
described in Section 3.4.1. Like the Ethernet module, the IPv4 module uses
the structure provided by the program to produce an IPv4 processed event.
Unfortunately, there is a layer violation between IPv4 and some transport
layers (such as TCP[12] and UDP[10]). These include a checksum that is
based on the IPv4 header[9]. To facilitate this, the IPv4 module generates a
piece of binary data that is used by these modules in the implementation of
their checksum. It is expected that IPv6 could be implemented in much the
same way as IPv4.

3.4.5 Logging

In Section 3.1.1, we discussed the need for a logging mechanism. As all
information that we may wish to log is expressed in the form of events,
the logging mechanism may be implemented as a module like any other. It
would be possible to have multiple loggers presenting different information
to different destinations (such as to a GUI, terminal, network service, and so
on), however only a single configurable logger that outputs to standard out
has been implemented.

18 Ethernet frames have a number associated with them, known as the EtherType. This
number specifies the type of packet that is in the payload.

3.4. MODULES 25

The logger can be configured to filter the output according to the event
type name, or contents of the event. The filtering is done by regular expres-
sion implemented with PCRE[8]. Using this filtering, the user may spec-
ify that particular anomaly events are in fact expected, or that understood
events are in fact anomalies.

In order to permit the user to identify the results of each packet, the logger
splits the stream of events by packet sniff events. The user may configure
events to be excluded from the split result.

3.4.6 Port Scan

Section 2.1.2 defines a port scan. A port scan can be detected by counting
the number of unsolicited accesses by a given IP address to any TCP or UDP
port. If this number becomes so high that it is likely to be the result of a
deliberate attempt at performing a port scan, the module produces a port
scan anomaly event.

The port scan module subscribes to TCP packet processed events and
UDP packet processed events. Each IP address that either sends or receives
TCP or UDP packets to or from the local machine has associated with it
a record containing the set of ports that the local machine has used as a
source port with that address, and the set of ports that the remote machine
accessed that were not in the set of source ports. If the size of the second
set grows to beyond a specified number, the module produces a port scan
anomaly event.

3.4.7 Resource Monitor

The resource monitor module subscribes to interface send events, and in-
terface sniff events. It is used in order to collect much of the data used to
evaluate the project in Chapter 4. The resource monitor module records to
a file information about the CPU, memory, and network usage of the system
each time a packet is sent or received.

3.4.8 Sniffer

It is the sniffer module that acquires data from the network, and writes
packets generated by the program onto the network. This is implemented as
a module to allow it to be replaced with a testing module that provides a
simulated network. It could also be replaced with a module that permits the
program to analyse the network traffic of another machine.

26 CHAPTER 3. IMPLEMENTATION

3.4.9 Named Pipe Testing

In order to allow the program to be tested using simulated network traffic,
I have implemented a module that replaces the sniffer module. The replace-
ment module reads packets from a named pipe19, and writes packets to a
different named pipe. I have used this to interface with a set of Python
scripts, however I could use any language that can read from and write to
files. This is a good example of the interchangeability advantages of a mod-
ular approach.

The interactivity afforded by this named pipe approach permits the test
suite to generate packets in response to those generated by the system –
something which would not be possible using a packet dump that had been
prepared beforehand.

3.4.10 Traceroute

This module implements an ICMP traceroute. It stores the results to disk
to allow the module to forgo repeating traceroutes that were performed a
previous time the program ran. When a traceroute is complete, it produces
an event with details of the address tracerouted, and the nodes that appear
as intermediate routers. A traceroute operates by sending packets with in-
creasing TTL (time to live). Since a router is required to decrement the
TTL of a packet it routes and is required to emit an ICMP Time Exceeded
packet if the TTL becomes zero[11], it is possible to perform a traceroute by
producing packets20 with increasing TTL. As a result of difficulties that are
described in Section 4.3.1, an option was added to prevent the module from
tracerouting IP addresses that are contacted by ICMP only.

A second module is implemented that detects anomalies in the traceroute.
It simply listens for traceroute events, and determines whether they contain
intermediate nodes that are known to be bad (such as those known likely to
be censorship proxies[25]), or have a node with an unusually long hop time21.
It would be easy to extend the system by implementing more modules that
detect other possible anomalies in the traceroute.

19 A named pipe is a file that acts like a FIFO – written to by one process, and read
from by another.

20 It is possible to use any IPv4 packet with the TTL properly set, however I have
chosen to use ICMP Echo Request packets.

21 This is the time between the sending of the ICMP Echo Request packet and the
receipt of the ICMP Time Exceeded (or ICMP Echo Reply) packet. This is chosen over
comparing the difference from the previous hop for simplicity, and because it is equally as
effective at detecting the intended anomaly.

3.5. SUMMARY 27

3.4.11 Transmission Control Protocol

This module is responsible for decoding TCP (transmission control protocol)
segments, and for producing events that specify the reception of a TCP
segment. The module is able to produce information about the segment,
such as the source and destination ports, and the flags that were set.

3.4.12 User Datagram Protocol

This module simply removes the UDP (user datagram protocol) header, and
generates an event with the appropriate source and destination address and
ports, and the payload.

3.5 Summary

The system is implemented in a very modular way, using a publish/subscribe
event system with dynamically typed events. The result is a very powerful
framework, well suited to the task of detecting anomalous behaviour, upon
which a suite of modules have been developed.

28 CHAPTER 3. IMPLEMENTATION

Chapter 4

Evaluation

4.1 Detection of Anomalies

The first criterion from the project proposal1 discusses the requirement that
the project be able to detect anomalous behaviour of the network. It also
suggests some anomalies that the system should be able to detect to demon-
strate the correct operation of the system.

4.1.1 Unusual Traceroute Path

The system is able to perform traceroutes on IP addresses that are contacted,
and identify nodes that appear in a blacklist. Appendix A shows the output
that results when using a web browser to visit a website (the homepage only,
on my Virgin Media connection) that appears in the IWF’s list of sites to
block. This part of the criterion is fulfilled.

4.1.2 Hop Time

Using the traceroutes collected as described in Section 4.1.1, the system can
identify nodes that responded to the traceroute packets in an unusually long

1 “The system should be able to detect a number of different anomalies, using active
and passive techniques where appropriate. These anomalies might include:

• Unusual path revealed by traceroute

• Unusual time taken to reach a hop

• Port scanning of the local machine

• The receipt of unusual packet types”

29

30 CHAPTER 4. EVALUATION

time. An example of the resulting output is presented in Appendix B. The
threshold round trip time was set to 100 ms to make testing easier, however
this is simply an option in the configuration. This part of the criterion is
fulfilled.

4.1.3 Port Scanning

The system can process TCP and UDP packets to produce events that iden-
tify the source and destination addresses and ports. The port scan detection
module is able to process these events to identify machines that attempt to
access too many ports without solicitation. Appendix C demonstrates the
output produced by the system when a port scan is detected. The port scan
is the default SYN scan performed by Nmap[7]. Port scans are successfully
detected; this part of the criterion has been achieved.

4.1.4 Unusual Packets

When the system encounters a packet that is not known an anomaly event
is produced. It is possible to filter these anomalies using the configuration
for the logger, or to flag up packets that were understood. This is a good
example of how the logging module can be configured based on the user’s
specification of what kinds of network traffic and behaviours are expected.
Appendix D shows the response of the system to an unrecognised packet2.
The system has discovered many packets that were previously unknown to
me on several networks. This part of the criterion has been achieved.

4.2 CPU and Memory Requirements

This section addresses the second success criterion3 suggested in the proposal.
It is clearly important that the system be able to operate correctly and with
useful results given reasonable finite resources. This section provides an
analysis of the resources that are required by the system.

2 This 6 byte Ethernet frame is produced by my Android phone. The same frame (albeit
with a different source address) is produced by my father’s Android phone. I believe it to
be a bug, as the packet serves no apparent purpose, and conveys no apparent data (since
it is always the same). If it is not a bug, then it is an anomaly that indicates an function
of the phones that I did not know about – which is also something I want the project to
detect.

3 “An analysis of the memory and CPU requirements of the system, and how this is
affected by the amount and type of network traffic received. It is desirable that the system
can cope with a typical, but high load.”

4.2. CPU AND MEMORY REQUIREMENTS 31

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
P
U

 U
sa

g
e
 (

%
)

Transfer Rate (MBit/s)

Recorded values
Line of best fit

Figure 4.1: CPU Usage Under Load

Figure 4.1 shows the relationship between the transfer rate of incoming
test data over a TCP stream, and the associated CPU usage of the local
machine running the system. The program performed the experiment 25
times for each speed. The machine has a dual core processor, however the
system currently uses only a single thread. This means the program itself
can only use up to 50% of the CPU, although other consequent use – such
as by the kernel, or other processes, may still allow the total processor usage
to exceed 50%. This should be remembered when interpreting this graph. It
is apparently possible for the system to handle a throughput of 50 MBit/s –
albeit with significant (about 40%) load on the CPU. Higher rates are just
about achievable, up to around 100 MBit/s. It should be noted that there
is some noise in this graph – as it measures the CPU usage of the entire
machine, not just the one program. When this test run without the program
running, the CPU usage has a similar amount of noise, and runs at roughly
15% or 20%.

Figure 4.2 shows the memory usage as a function of time. The data
for this graph was produced with a typical set of modules loaded, plus the
resource monitor module. The system was allowed to run for several hours
during which I engaged in normal activities with the Internet. Although
the graph has the appearance of a memory leak, the memory is used by
the traceroute and port scan modules, which accumulate data as the system

32 CHAPTER 4. EVALUATION

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7

M
e
m

o
ry

 U
sa

g
e
 (

M
B

)

Time (hours)

Recorded values
Line of best fit

Figure 4.2: Memory Usage

runs. This data is necessary in order to allow the system to use data collected
about past traffic to detect anomalies, or to perform a traceroute only if one
has not been performed on that address. Given more development time, it
should be possible to make these modules take full advantage of the persistent
storage4. If this were to be done, it should be possible to keep the memory
usage below a constant threshold. By extrapolation, it should be possible
to run the system for over two days before it consumes 100 MB of memory.
Although this would have to be fixed before the system will meet the strictest
version of success criteria set out in my proposal5, the system as implemented
meets the basic version.

4 Currently, the traceroute module keeps a set of traceroutes already performed in
persistent storage in order to avoid doing traceroutes that have been done a previous time
the project was run, however more work could be done to make better use of the storage
in order to cache only some of this data in main memory.

5 “Success for this category of criteria will require that the system should work well
on modest end user hardware under typical load. Ideally, however, we would like that the
system can provide most of its functionality in much more challenging environments. In
this case, we may consider the project to be especially successful by these criteria.”

4.3. TRAFFIC GENERATED 33

4.3 Traffic Generated

4.3.1 Traceroute

The tracerouting performed by the program is particularly worthy of com-
mentary in this evaluation, as several issues arise to complicate successful
collection and use of this data. The traceroute module, at its simplest, is
designed to perform a traceroute on every IP address with which the local
machine has contact.

The approach initially attempted simply tracerouted every IP address
from which a packet is received, or to which a packet is sent. This includes
packets from intermediate nodes generated by tracerouting. This works if
the network is close to (even if not exactly equivalent to) being a tree from
the end system’s point of view.

192.0.2.12

198.51.100.5 198.51.100.6

203.0.113.4

203.0.113.168 203.0.113.169

Figure 4.3: Routing Anomaly

Unfortunately, when this method
was attempted on a real network,
there were sufficiently many rout-
ing anomalies that increased the
number of intermediate nodes6, that
the queue of nodes to be tracer-
outed increased much faster than
they could be processed. Fig-
ure 4.3 gives a small example of
a routing anomaly that produces
this problem. In this example,
if 203.0.113.168 or 203.0.113.169
is tracerouted, then the path ap-
pears to be via 198.51.100.5 and
203.0.113.4. If, however, 203.0.113.4
is tracerouted, the path appears to
be via 198.51.100.6. With many of
these anomalies, such as if the ap-
parent path to 198.51.100.6 is also different, then the number of routers we
attempt to traceroute grows very quickly. Even if we could perform all of
these traceroutes, it is likely that no useful information could be easily gath-
ered, as there would be a huge number of anomalies.

If the user configures the module so that IP addresses are not tracerouted

6 Although the idealised version of the Internet is a tree from the perspective of a single
node, in practice, ISPs often use load balancing, and other non-obvious routing policies
that mean the view may not be a tree.

34 CHAPTER 4. EVALUATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50

Fr
e
q

u
e
n
cy

 (
h
o
u
rs

)

Speed (kBit/s)

Figure 4.4: Histogram of Rate of Traffic Sent

if they are contacted in the form of an ICMP packet, the system behaves in
a sensible way.

In the proposal a requirement was stated that the traffic generated by
the system not be excessive7. Figure 4.4 shows the rate of sent traffic as a
histogram. The graph demonstrates that this is usually less than 10 kBit/s8.
In fact, the system sent less than 1 MB of traffic during the 7 hours the test
was run. This is a very acceptable rate of traffic, and achieves the goal that
the traffic should not be excessive.

4.3.2 Trade Offs

With such a diverse range of environments on which we may wish to run
the system – from a small domestic gateway connected to a low bandwidth

7 “It is desirable that the system should not generate unacceptable traffic under any
circumstance.” A significant component of “unacceptable traffic” is too much traffic.
Since the project only generates ICMP Echo Request packets, which we shall assume to
be acceptable if the user has enabled the traceroute module, the best analysis of whether
this criterion is met lies in an analysis of how much traffic is generated.

8 This speed is computed as an exponentially weighted moving average of the speed,
with a half life of one second. The amount of time spent at higher than 50 kBit/s (the rate
of traffic sent does not exceed 0.25 MBit/s) is extremely small, and has not been included
in Figure 4.4.

4.4. MODULARITY AND EXTENDABILITY 35

network to a powerful server with a 10 Gigabit connection – it is important
to consider the trade offs involved when choosing what analyses to perform.
The traceroute module provides an excellent example of a module where
there are many such trade offs.

Firstly is the trade off required to solve the problems described in the
Section 4.3.1. It is possible to traceroute only a subset of the nodes contacted
as a consequence of tracerouting. This prevents the queue of traceroutes
from becoming ever longer, however less information about the network is
collected.

In general, it is often possible to reduce resource or traffic requirements
at the expense of reducing the accuracy or amount of information collected.

Another important consideration for the traceroute module (and for other
modules that might, for example, require a cache of HTTP headers returned
by HTTP servers) is persistent storage and its rate of access. Much of the
information gathered could be stored in persistent storage, thereby conserv-
ing memory. In many cases, data structures such as a hashmap, could be
used to allow common operations to be performed with a small amount of
data in memory, while occasionally being forced to go to disk. This would
be an extension.

4.4 Modularity and Extendability

It is a success criterion that the system should be implemented in a way
that is modular and easy to extend. The framework represents the set of
mechanisms that are used to achieve this last success criterion9 listed in my
project proposal. In this section, I will discuss how well decoupled the differ-
ent modules are from each other, and how difficult it would be to implement
a new module.

The trade off to use dynamic typed events as discussed in Section 3.3.1
has proven to be well worth it! The result is loose coupling between modules,
and a tidy event system. This loose coupling is exactly what is required to
enable new functionality to be easily added to the system – as required by
the last success criterion.

4.4.1 Ease of Extension

In this section, I consider the amount of work that would be required in
order to implement a new module for the system. This serves as a good

9 “The system should be implemented in a modular way that would enable further
functionality to be added easily.”

36 CHAPTER 4. EVALUATION

example of managing incidental complexity (a topic discussed in the Software
Engineering course) – leaving only the intrinsic complexity behind.

One potential source of incidental complexity might be changes that are
required to be made to the rest of the system in order to interface the new
module with the existing ones. Since the modules communicate with each
other through dynamically typed events, it would not be necessary to change
any other part of the system to accommodate the new module – even if the
new module were to replace an existing one.

Since the framework provides a library of useful tools and data structures,
it is likely that these can be used in the development of the new module –
thereby reducing the amount of code that must be written. This avoids the
need for ugly and difficult to understand hacks that result from naive reim-
plementation of functionality. It is also not necessary to test these structures
upon use, as they will likely have been tested by other modules’ use of them.
Many of the structures (such as the binary blob class) provide a way for
different modules to exchange information with one another.

The event system provided by the library is versatile, and allows modules
to express information they’re interested in with a common format. A module
that detects anomalous behaviour can simply subscribe to the information it
requires, process the information in an event handler, and publish an event
if the anomaly is detected. Likewise, a new module can be implemented
by subscribing to the received events that would be expected to contain the
protocol’s data, processing those events, and producing processed events.
The complexity of dissecting the lower protocols is handled elsewhere, as is
the complexity of delivering that information to the module.

As an example of the effectiveness of this modularity, consider the time
taken to implement the first of the specified anomalies implemented. Much
of the framework had to be implemented for all four of the anomalies – as
well as several protocols. This work, and the first anomaly took several weeks
to complete. Having completed this work, I was able to implement the other
two anomalies in a single night, and test and fix them given only a few more!
The source code for, for example, the detection of an anomalous traceroute, is
extremely simple because it need only identify such a path from a traceroute
that is already provided by a module elsewhere in the system. Adding a
second anomaly, detection of an unusually high time taken to reach a hop,
also takes very little code.

In short, the new modules are able to take advantage of functionality im-
plemented by other modules, and by the framework, with as little incidental
complexity as possible. It is easy to add new functionality to the system,
and this was the aim of the final success criterion. This success criterion has
been achieved well.

4.5. SUMMARY 37

4.5 Summary

My project works well, and has achieved all the success criteria set out in the
project proposal. It detects several anomalies, including all the ones specified
as success criteria, and a number of other anomalies too. Of course, this
project, being somewhat open ended, leaves plenty of scope for extension10.
Section 5.1 discusses this further.

10 As remarked elsewhere, it would be impossible to detect every conceivable anomaly
in a Part II Project.

38 CHAPTER 4. EVALUATION

Chapter 5

Conclusions

This project has been completed successfully. All of the success criteria set
out in the proposal have been met, with many features implemented. As a
network anomaly discovery tool, it is somewhat pleasing to have discovered
many unknown properties in the networks my machines are connected to –
including genuine bugs, such as the 6 byte Ethernet frame emitted by my
phone! To bring the project full circle, the project is capable of detecting the
interception discussed in Chapter 1.

If planning the project with hindsight, I would probably converge much
more quickly on a design that resembles the one chosen – it appears to be
an effective solution. There are a number of small changes1 I might wish to
make, however it would be perfectly feasible to make these changes to the
project as it stands.

5.1 Future Work

Of course, since much of the project is the production of infrastructure suited
to real time analysis of received network traffic, this is not as far as the project
could be taken. As a modular project with such an open ended basic aim,
there is enormous scope to implement new functionality – extra anomalies,
more protocols, and so on.

One could also seek to complete the functionality that I did not have time
for. The project could easily be extended to process IPv6. This would be
a matter of implementing the IPv6 protocol as was done for IPv4. Due to
time constraints, the TCP module has less functionality than I had hoped. It

1 These include using different namespaces (a C++ mechanism for separating the code
out into different named sections) for the modules, and improving the library of FSMs
made available for creating subscriptions.

39

would be interesting to implement TCP stream decoding (as opposed to just
the segments as described in Section 3.4.11), and see what kinds of anomalies
can be discovered by analysing higher layer protocols such as HTTP. I had
hoped, as an extension, to perform a statistical analysis on the traceroutes to
automatically identify unusual traceroutes. Nonetheless, unusual traceroutes
can be detected if the node that makes it unusual is known. More use of the
persistent storage mechanism could be implemented in order to improve the
memory usage of the system, as described in Section 4.2. There is scope
to make the system multithreaded – which would enable more processor
intensive analysis on systems with processors that have a large number of
cores. A more novel idea might be to use machine learning techniques to
discover anomalous behaviour that would be difficult specify using a fixed
rule set[17].

On top of this, the project could be expanded to discover other kinds
of information that can be revealed through inspection of network traffic,
including much more complicated analysis of traffic – something which my
system is well suited to. This might include evidence of a compromised
local machine (by detecting emitted traffic that the administrator has not
intended), or for more research oriented projects such as producing a map
of the Internet. Another possible avenue for expansion might be to permit
several instances of this project to communicate2 – forming a federation of
machines that can identify anomalies that arise out of observing that a small
number of machines receive a different network response to the rest.

5.2 Final Words

This project has achieved its original aims, and would make a good platform
upon which further development could take place. It has revealed the kinds
of interesting information that it was intended to highlight, and has helped
me to learn more about the chosen subject. I hope to continue working on
this project – that has already been such a success – in the future.

2 The idea of using a distributed set of nodes to gather information about a network
has been explored and found to be viable[27].

40

Bibliography

[1] 802.1Q – IEEE Standard for Local and metropolitan area networks –
Virtual Bridged Local Area Networks. http://standards.ieee.org/

getieee802/download/802.1Q-2005.pdf.

[2] Bison. http://www.gnu.org/software/bison/.

[3] EtherTypes. http://standards.ieee.org/develop/regauth/

ethertype/eth.txt.

[4] Flex. http://flex.sourceforge.net/.

[5] IP Protocol Numbers. http://www.iana.org/assignments/

protocol-numbers/protocol-numbers.txt.

[6] libconfig. http://www.hyperrealm.com/libconfig/.

[7] Nmap. http://nmap.org/.

[8] Perl Compatible Regular Expressions. http://www.pcre.org/.

[9] RFC 1071 – Computing the Internet Checksum. http://tools.ietf.

org/html/rfc1071.

[10] RFC 768 – User Datagram Protocol. http://tools.ietf.org/html/

rfc768.

[11] RFC 791 – Internet Protocol. http://tools.ietf.org/html/rfc791.

[12] RFC 793 – Transmission Control Protocol. http://tools.ietf.org/

html/rfc793.

[13] RFC 826 – An Ethernet Address Resolution Protocol. http://tools.

ietf.org/html/rfc826.

41

http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf
http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf
http://www.gnu.org/software/bison/
http://standards.ieee.org/develop/regauth/ethertype/eth.txt
http://standards.ieee.org/develop/regauth/ethertype/eth.txt
http://flex.sourceforge.net/
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.txt
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.txt
http://www.hyperrealm.com/libconfig/
http://nmap.org/
http://www.pcre.org/
http://tools.ietf.org/html/rfc1071
http://tools.ietf.org/html/rfc1071
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc826
http://tools.ietf.org/html/rfc826

[14] Service Name and Transport Protocol Port Number Registry.
http://www.iana.org/assignments/service-names-port-numbers/

service-names-port-numbers.txt.

[15] Snort. http://www.snort.org/.

[16] SQLite. http://www.sqlite.org/.

[17] Matthew V. Mahoney; Philip K. Chan. Learning Rules for Anomaly De-
tection of Hostile Network Traffic. http://www.cs.fit.edu/Projects/
tech_reports/cs-2003-16.pdf.

[18] Richard Clayton. Failures in a Hybrid Content Blocking System. www.

cl.cam.ac.uk/~rnc1/cleanfeed.pdf.

[19] Richard Clayton. Technical aspects of the censoring of
Wikipedia. http://www.lightbluetouchpaper.org/2008/12/11/

technical-aspects-of-the-censoring-of-wikipedia/.

[20] Richard Clayton. The IWF Blocking List Recent UK Experiences. www.
cl.cam.ac.uk/~rnc1/talks/090630-inex.pdf.

[21] Lilian Edwards. Content Filtering and the New Censorship. Fourth
International Conference on Digital Society, pages 317–322, February
2010.

[22] Patrick Th. Eugster; Pascal A. Felber; Rachid Guerraoui; Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing
Surveys, 35(2), June 2003.

[23] Jayant Gadge; Anish Anand Patil. Port Scan Detection. 16th IEEE
International Conference on Networks, pages 1–6, December 2008.

[24] Pietzuch; Peter R. Hermes: A scalable event-based middleware. Tech-
nical Report UCAM-CL-TR-590, University of Cambridge, Computer
Laboratory, June 2004.

[25] Wikipedia. Administrators’ noticeboard/2008 IWF action.
http://en.wikipedia.org/w/index.php?title=Wikipedia:

Administrators%27_noticeboard/2008_IWF_action&oldid=

451983662.

[26] Antonio Carzaniga; David S. Rosenblum; Alexander L. Wolf. Design and
evaluation of a wide-area event notification service. ACM Transactions
on Computer Systems, 19(3), August 2001.

42

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
http://www.snort.org/
http://www.sqlite.org/
http://www.cs.fit.edu/Projects/tech_reports/cs-2003-16.pdf
http://www.cs.fit.edu/Projects/tech_reports/cs-2003-16.pdf
www.cl.cam.ac.uk/~rnc1/cleanfeed.pdf
www.cl.cam.ac.uk/~rnc1/cleanfeed.pdf
http://www.lightbluetouchpaper.org/2008/12/11/technical-aspects-of-the-censoring-of-wikipedia/
http://www.lightbluetouchpaper.org/2008/12/11/technical-aspects-of-the-censoring-of-wikipedia/
www.cl.cam.ac.uk/~rnc1/talks/090630-inex.pdf
www.cl.cam.ac.uk/~rnc1/talks/090630-inex.pdf
http://en.wikipedia.org/w/index.php?title=Wikipedia:Administrators%27_noticeboard/2008_IWF_action&oldid=451983662
http://en.wikipedia.org/w/index.php?title=Wikipedia:Administrators%27_noticeboard/2008_IWF_action&oldid=451983662
http://en.wikipedia.org/w/index.php?title=Wikipedia:Administrators%27_noticeboard/2008_IWF_action&oldid=451983662

[27] Sridhar Srinivasan; Ellen W. Zegura. Network Measurement as a Co-
operative Enterprise. Proceeding IPTPS 2001 Revised Papers from the
First International Workshop on Peer-to-Peer Systems, pages 166–177,
2001.

43

44

Appendices

A Anomalous Traceroute Output

Visited URL: http://img201.imagevenue.com/3 4

anomaly:traceroute:blacklist:

destination: 72.55.191.38

node: 195.182.178.150

rtt: 0.020000

source: 192.168.1.16

traceroute: [

address: 192.168.1.1

rtt: 0.090000

ttl: 1,

address: 82.29.40.1

rtt: 0.028000

ttl: 2,

address: 213.106.254.117

rtt: 0.018000

ttl: 3,

address: 213.105.159.205

rtt: 0.023000

ttl: 4,

address: 213.105.64.22

rtt: 0.020000

ttl: 5,

address: 195.182.178.150

rtt: 0.020000

ttl: 6,

3 This URL was suggested by Dr Richard Clayton who has a list of domains and IP
addresses that are on the IWF list.

4 This output has been trimmed to include only the relevant part.

45

address: 62.30.0.204

rtt: 0.019000

ttl: 7,

address: 62.30.249.46

rtt: 0.022000

ttl: 8,

address: 213.161.65.149

rtt: 0.031000

ttl: 9,

address: 64.125.14.18

rtt: 0.021000

ttl: 10,

address: 4.69.139.120

rtt: 0.033000

ttl: 11,

address: 4.69.153.129

rtt: 0.024000

ttl: 12,

address: 4.69.137.78

rtt: 0.089000

ttl: 13,

address: 4.69.134.66

rtt: 0.089000

ttl: 14,

address: 4.69.141.5

rtt: 0.096000

ttl: 16]

ttl: 6

46

B High RTT Output

Produced by setting the RTT threshold to 100 ms5.

anomaly:traceroute:rtt:

destination: 60.241.203.71

node: 38.104.138.94

rtt: 0.389000

source: 192.168.1.16

traceroute: [

address: 192.168.1.1

rtt: 0.014000

ttl: 0,

address: 192.168.1.1

rtt: 0.007000

ttl: 1,

address: 82.29.40.1

rtt: 0.021000

ttl: 2,

address: 213.106.254.109

rtt: 0.013000

ttl: 3,

address: 213.105.159.205

rtt: 0.024000

ttl: 4,

address: 62.253.185.118

rtt: 0.023000

ttl: 5,

address: 62.253.174.18

rtt: 0.079000

ttl: 6,

address: 130.117.14.141

rtt: 0.033000

ttl: 7,

address: 130.117.50.138

rtt: 0.036000

ttl: 8,

address: 130.117.0.97

rtt: 0.017000

5 This output has been trimmed to include only the relevant part.

47

ttl: 9,

address: 154.54.43.193

rtt: 0.115000

ttl: 12,

address: 154.54.82.141

rtt: 0.125000

ttl: 13,

address: 154.54.24.109

rtt: 0.163000

ttl: 14,

address: 154.54.1.130

rtt: 0.165000

ttl: 15,

address: 154.54.6.238

rtt: 0.165000

ttl: 16,

address: 38.104.138.94

rtt: 0.389000

ttl: 17]

ttl: 17

48

C Port Scan Output

Command: nmap -sS 192.168.1.166

anomaly:portscan:too many unsolicited:

count: 11

destination: 192.168.1.16

source: 192.168.1.55

6 This output has been trimmed to include only the relevant part.

49

50

D Unusual Packet Output

Unusual packets apparently originating from my Android phone.

[*] logger:stack:

logger:stack: [

processed:ethernet:

destination: FF:FF:FF:FF:FF:FF

ethertype: 0x6

payload: Length: 46

00 01 AF 81 01 02 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00

source: 90:21:55:E6:F2:28,

anomaly:table:ethernet:unknown:

buffer: Length: 46

00 01 AF 81 01 02 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00

key: 6]

51

52

E The Pirate Bay Interception

Visiting The Pirate Bay (http://thepiratebay.se/) on a Virgin Media Internet
connection after they blocked it7.

anomaly:traceroute:blacklist:

destination: 194.71.107.15

node: 195.182.178.150

rtt: 0.068000

source: 192.168.128.3

traceroute: [

address: 192.168.128.1

rtt: 0.065000

ttl: 0,

address: 192.168.128.1

rtt: 0.038000

ttl: 1,

address: 192.168.1.1

rtt: 0.040000

ttl: 2,

address: 82.29.40.1

rtt: 0.084000

ttl: 3,

address: 213.106.254.109

rtt: 0.099000

ttl: 4,

address: 213.105.159.205

rtt: 0.068000

ttl: 5,

address: 213.105.64.22

rtt: 0.077000

ttl: 6,

address: 195.182.178.150

rtt: 0.068000

ttl: 7,

address: 62.30.0.204

rtt: 0.077000

ttl: 8,

address: 62.30.249.46

7 This output has been trimmed to include only the relevant part.

53

rtt: 0.066000

ttl: 9,

address: 213.161.65.149

rtt: 0.086000

ttl: 10,

address: 213.248.76.85

rtt: 0.094000

ttl: 11,

address: 80.91.247.91

rtt: 0.107000

ttl: 12,

address: 80.91.250.148

rtt: 0.114000

ttl: 13,

address: 80.91.249.204

rtt: 0.167000

ttl: 14,

address: 80.91.253.237

rtt: 0.111000

ttl: 15,

address: 80.239.128.170

rtt: 0.123000

ttl: 16,

address: 82.96.1.161

rtt: 0.129000

ttl: 17,

address: 192.121.80.155

rtt: 0.103000

ttl: 18,

address: 192.121.80.181

rtt: 0.152000

ttl: 19,

address: 194.14.56.2

rtt: 0.121000

ttl: 20]

ttl: 7

54

Nicholas Tomlinson
Robinson College

nst25

Computer Science Tripos Part II

Network Anomaly Discovery

20th October 2011

Project Originator: Nicholas Tomlinson

Resources Required: See attached Project Resource Form

Project Supervisor: David Evans

Signature:

Director of Studies: Anuj Dawar

Signature:

Overseers: Cecilia Mascolo and Larry Paulson

Signatures:

Introduction and Description of the Work

My project will discover anomalous behaviour of computer networks by anal-
ysis of traffic reaching an end machine, and by sensibly selected generation
of traffic from this machine (for example, traceroutes). This would be done
by constructing a framework with which specific anomalies could be recog-
nised, logged, and displayed to the user. It should be noted that, since the
project is intended to be run on an end machine rather than elsewhere in the
network, anomalies centre largely around the machine in question. For ex-
ample, the detection of port scanning would typically be a port scan against
the particular machine running the program.

Resources Required

• My laptop for development and testing. This is required as I must have
root access on machines for testing. In the unlikely event this machine
becomes unavailable, there are alternatives available that are otherwise
non-essential.

• Internet access on the above for testing and research (this Internet
access should not be unreasonably sensitive to unusual (but harmless)
traffic - for example, a traceroute of every IP address that I would
otherwise contact normally).

• Free open source software packages and libraries. These software pack-
ages and libraries may provide a number of useful facilities that my
project will depend upon.

• There are several other resources that may be useful for the completion
of this project, but on which my project’s successful completion does
not depend. These may be requested on an ”if possible” basis, and are
not listed here.

Starting Point

I have previously experimented with a somewhat primitive (both in design
and in provided functionality) system in Python to detect a few specific odd-
ities (primarily evidence of unexpected HTTP proxies, and mismatch of IP
address and MAC address). This system has only fairly minimal modular-
ity and functionality. I have written a very simple packet sniffer to become

2

familiar with the API for doing this (the program does nothing more than
print a list of received packets with a few details about them). I have also ex-
perimented with HTTP header fingerprinting using machine learning (which
was partially successful), and have a general interest in networking and have
explored a few other projects that I feel are insufficiently related to this one
to mention further.

Substance and Structure of the Project

Components

There are a wide variety of anomalies that one could wish to detect using
this system. Therefore, I feel that modularity is key to this project. It is
well worth noting that in this context, an anomaly is any traffic or behaviour
of the network that is not expected. Typically, this will be unusual or non-
compliant behaviour or traffic, however user specification may also dictate
that traffic that would otherwise be considered normal is in fact anomalous,
or that traffic that would normally be considered anomalous is in fact normal.
An anomaly may obviously be be malicious (such as a port scan, or traffic
interception), however it may also be unintentional behaviour (such as the
Ethernet frame with a six byte payload that is occasionally produced by my
phone, I believe erroneously) or just a curiosity (such as a change in network
configuration).

Broadly speaking, this project might be composed of the following:

• Protocols. These protocols are responsible for interpreting the data
received over the network.

• Anomalies. These anomalies are responsible for analysing the infor-
mation provided by the protocols, and determining whether this infor-
mation is indicative of anomalous behaviour. It is worth noting that
anomalies, and indeed several other parts of the system are not dissim-
ilar to protocols – both may interact using the subscription mechanism
(explained in more detail below).

• A subscription mechanism for linking the different protocols to each
other, and for linking anomalies to protocols. This mechanism should
enable the different protocols used in a packet (or indeed, at higher
levels, a stream) to be connected without imposing the rigidity of stat-
ically defining each link. This system should also permit anomalies to
receive information from several different protocols to cater for anoma-
lies which are visible only when examining multiple protocol layers in

3

a packet or stream. The subscription mechanism would enable dif-
ferent protocols to be notified of events generated by other protocols,
anomalies, and other parts of the system.

• A mechanism to allow the user to configure the system. This configura-
tion might allow the user to specify that the system should not perform
certain operations (for example, the covert user might wish the system
not to emit any additional traffic). This mechanism could also be used
to allow the user to specify information that would allow the system to
more precisely define what anomalous operation is and is not (for ex-
ample, by specifying that certain behaviours are not anomalous in the
current environment, even though it would typically be so elsewhere).

• A library of data structures and algorithms that may be common be-
tween many anomalies and protocols. Examples might include:

– Finite State Machines. These are a useful tool for implementing
many different protocols (for example, TCP) and anomalies.

– An information storage mechanism. This could be responsible
for maintaining cached information which could either be com-
pared later, or used to avoid unnecessary repetition of expensive
operations. This mechanism might provide special facilities, for
example to log old data and allow it to expire in the cache.

– A set of algorithms for performing statistical analysis on network-
ing data (such as on the route reported in a traceroute, or the
timing observations of a connection).

• A system for logging information, and reporting information to the
user.

Event Diagram

It may be helpful to consider the preliminary design for how the system
should process data received from the network. This is a particularly impor-
tant aspect of the system, as it determines much of the overall architecture.
To that end, figure 1 shows part of the graph of events. The graph is a
directed graph with an edge from node A to node B representing an event
that A could produce and B would receive.

Of course, there is no restriction on how many modules may subscribe to
an event. Therefore, it is possible to easily add extra functionality, such as
to log how many Ethernet frames are sent and received simply by allowing

4

another module (in this example, a log) to receive these events. Since this
graph would be managed by the subscription service (described in more detail
below), this diagram does not contain every node or edge that would be in
the final system, in order to prevent the diagram becoming unwieldy.

The subscription mechanism is in charge of maintaining the edges in this
graph so that the system can be constructed in a much more modular way
than would otherwise be achievable. Modules subscribe to events they would
like to receive using the subscription mechanism. This enables a new module
to be added to the system without making changes to other parts of the
system that would otherwise be necessary to link the new module in. The
key here is to ensure this subscription mechanism is sufficiently flexible to
accommodate an event model that provides tidy linking of loosely coupled
modules. It becomes clear that a good implementation of this subscription
mechanism is important.

Injector

Sniffer

Ethernet802.11

Detailed Log

User Log

IPv4 IPv6

ICMP TCP UDP

Traceroute

ICMPv6

HTTP

TCP/HTTP MismatchUnexpected Traceroute

Traceroute Stack

1 2 3 Out

ICMP IPv4 Ethernet

Figure 1: Event Graph

5

The graph is coloured to make explanation of the different parts of the
system easier to explain. The blue nodes are responsible for interacting
with the outside world – for example writing to a log file, or listening to
the network. The green nodes are protocols for recognising received data.
The yellow nodes are responsible for interacting with the network – in this
example, performing traceroutes. The red nodes detect anomalies8.

As an example, if a UDP in IP in Ethernet packet is received, the sniffer
would produce an Ethernet frame received event. Since the Ethernet protocol
subscribes to Ethernet frame received events, this would be processed by the
Ethernet protocol, which would then produce an IP packet received event
(as well as an Ethernet type 0x0800 packet received event). The IP protocol
(which subscribes to these events) would process this packet, and produce a
UDP packet received event which will be processed by the UDP protocol.

The Traceroute Stack warrants explanation. It is set up by the Traceroute
and is responsible for coordinating the generation and receipt the events
necessary to send a complete packet over the network.

In this example, the Ethernet receiving and sending nodes both log infor-
mation using the event system. In the developed system, many of the other
nodes might write to the log too – particularly for debugging purposes. This
graph may contain cycles to permit the processing of encapsulated packets –
for example, to permit IPv4-in-IPv4.

Extensions

This project presents several different possible extensions beyond the core
functionality necessary to satisfy the success criteria. These include:

• The most obvious extension is the inclusion of additional detectable
anomalies.

• Discovering information about non-anomalous operation of the net-
work, such as building a map of the network. This could use informa-
tion already gathered for anomaly detection. Continuing the example,
traceroutes performed to detect anomalous routing could also be used
to build this map.

• Providing defences against some malicious anomalies. For example, a
port scan might be hindered by pretending to have open ports that are
in fact closed.

8 Note: I have included “TCP/HTTP Mismatch” because it is a good example of how
an anomaly may interact with more than one protocol. I would need to do further research
before I could determine how feasible this anomaly is to detect.

6

Success Criteria

This project could be evaluated against several different criteria. These might
include:

• The system should be able to detect a number of different anomalies,
using active and passive techniques where appropriate. These anoma-
lies might include:

– Unusual path revealed by traceroute

– Unusual time taken to reach a hop

– Port scanning of the local machine

– The receipt of unusual packet types

• An analysis of the memory and CPU requirements of the system, and
how this is affected by the amount and type of network traffic received.
It is desirable that the system can cope with a typical, but high load.

• An analysis of the relationship between the traffic received, and the
amount and type of traffic generated. It is desirable that the system
should not generate unacceptable traffic under any circumstance.

• The system should be implemented in a modular way that would enable
further functionality to be added easily.

Evaluation Method

These success criteria (as well as others that are discovered to be useful) will
be important in the evaluation section of the dissertation, and to establish
that the produced software works.

The system should correctly detect the implemented anomalies. This can
be established qualitatively – the system either tends to make the correct
judgement or not. In many cases, it may also be possible to perform a quan-
titative analysis by simulating many random instances of an anomaly, and
establishing the system’s false positive and negative rate (being aware that
these figures may not be representative of the real world if the artificial na-
ture of the tested anomaly instances poorly reflects reality). Evaluation of
this category of criteria will include these types of testing. A good work-
ing implementation of the project will be indicated by an ability to detect
anomalies with a low false positive and negative rate, except where one would
reasonably expect this to be difficult. Further, functionality such as logging
should be demonstrated to work reliably.

7

It is desirable that the system should be implemented in a modular way.
This will be evaluated by considering the work that would have to be done
to extend the system – to recognise additional anomalies, or to introduce
functionality that is quite different from that which has been implemented.
I will also consider how dependent the modules are on each other, and how
well abstractions that are designed to provide loose coupling work in practice.
This category of criteria, although important to this project, warrants a more
qualitative evaluation.

I will also perform an analysis of the computing resources required by
the project. This will be a very quantitative analysis that will provide an
indication of how practical it would be to operate the system in a range of
different environments. This includes an analysis and consideration of the
traffic generated by the system, as well as processing time, memory, and
other resources required. This section is particularly amenable to a more
numerical analysis – for example, producing graphs such as memory CPU
time usage caused by traffic received. Some of this analysis can also be
automated by producing a test framework that can collect the data for these
graphs. Success for this category of criteria will require that the system
should work well on modest end user hardware under typical load. Ideally,
however, we would like that the system can provide most of its functionality
in much more challenging environments. In this case, we may consider the
project to be especially successful by these criteria.

Timetable and Milestones

Work Packet 1

1st October 2011—31st October 2011

• Complete paper work, for example:

– This project proposal

– Resource request paperwork

• Set up framework for the project. For example:

– GIT repository

– Dissertation template

– Log (planned to be a directory in the git repository)

• Research and study documentation for example:

8

– RFCs

– Software documentation

• Investigate a rough set of tools, techniques and ideas that will be re-
quired, for example:

– Virtual machine software (and software to run in the VM)

– Available libraries and their APIs

– Other software and techniques that already exist (for example,
network centred IDSs)

Work Packet 2

31st October 2011—21st November 2011

• Continue with work already started

• Produce a design for the project

• Begin documenting the design. This design might include information
about:

– An overall architecture

– Protocols

– Anomalies

– Reporting and logging

– Configuration

– The linking between protocols, anomalies, and other reporting and
logging

– Consideration of data structures and algorithms, and how they
will be used

• Set up the framework for the code base

• Build a very simple packet dissection system based on the above:

– A small number of protocols (mainly packet based)

– A small number of demo anomalies (not necessarily real ones)

– Simple reporting (possibly just producing information about re-
ceived packets)

9

– The subscription mechanism should be mostly implemented at
this stage. The system should be implemented in a modular way
from the outset.

• Refine the design

Work Packet 3

21st November 2011—9th December 2011

• Extend the code built in the previous work packet. This might include:

– Basic TCP support

– Basic HTTP support

– A few simple anomalies

– Begin writing the configuration mechanism.

• Begin implementing framework and tools for testing the project. This
might include:

– A network of virtual machines

– Anomaly simulation tools

• Write the dissertation introduction to a good standard

• Write the dissertation preparation to a partial standard

Work Packet 4

9th December 2011—23rd December 2011

• Refine testing framework and tools

• Begin early work on the dissertation implementation

• Roughly and informally evaluate the work done so far. Consider what
should be changed or redesigned. Produce and experiment with new
ideas. Much of this work might be recorded as notes in the log.

10

Work Packet 5

23rd December 2011—16th January 2012

• Rework code to refine it, and include ideas considered in the last work
packet. This is largely (though not exclusively) a ”stop and polish”
process. The code should be in the following state by the end of this
item:

– Core framework stuff should be quite solid by this point

– Good progress should be made implementing the testing frame-
work. The testing system should, by this point, be able to mea-
sure many of the criteria set out in the success criteria. All of
the implemented anomalies should be tested by the system. The
testing process should be able to establish the CPU and memory
requirements of the system under relatively normal conditions.

• Write the dissertation preparation to a good standard

• Continue working on the dissertation implementation

• Informally begin to consider in more detail how the evaluation might
proceed

• Start limited empirical evaluation

• Begin writing the progress report

Work Packet 6

16th January 2012—2nd February 2012

• Rework and polish the testing framework as necessary. By this stage,
much of the quantitative analysis should be implemented, and prelim-
inary data should be available.

• Begin to expand the feature set. This may be a fairly limited process
in this work packet in order to ensure sufficient time is devoted to the
progress report, and to making the code stable. Work that should begin
might include:

– Implement more anomalies, and experiment with more ambitious
anomalies

– Implement the associated testing

11

• Reach a state suitable for a progress report - this is a ”stop and polish”
step

• Write the progress report

Work Packet 7

2nd February 2012—20th February 2012

• Heavy work on expanding feature set. By the end of this process, all
the planned features of the project should be implemented. At this
stage, extensions may also have been implemented if the project is
going particularly well.

• Further empirical testing. By this time, the testing framework should
be able to produce data for the full evaluation of all the success criteria.

• Partial dissertation implementation

• Begin to write the evaluation

• Informal ideas to prepare to refine above development

Work Packet 8

20th February 2012—12th March 2012

• Polish code where necessary

• Gather most of the remaining empirical testing data

• Have the dissertation implementation written to a good standard

• Have the dissertation evaluation written to a partial standard

• Begin writing the rest of the dissertation

Work Packet 9

12th March 2012—24th March 2012

• Polish most of the dissertation

• Finish writing the end of the dissertation

• Polish this too

12

Work Packet 10

24th March 2012—30th April 2012

• Fix anything that needs fixing

13

	Cover Sheet
	Proforma
	Declaration of Originality
	Table of Contents
	Introduction
	History
	Previous Work
	General Relation to Computer Science

	Preparation
	Requirements Analysis
	Definition of an Anomaly
	Possible Identifiable Anomalies

	Development Process
	Development Model
	Design Paradigms and Choice of Language
	Testing

	Preparatory Study
	Documentation
	Experimentation

	Implementation
	System Architecture
	Components
	Event Subscription Graph

	External Code and Tools
	Framework
	Event System
	Configuration
	Dynamic Values
	Binary Data Buffer
	Persistent Storage
	Error Reporting
	Finite State Machine
	Sockets
	Time and Timers

	Modules
	Address Resolution Protocol
	Ethernet
	Internet Control Message Protocol
	Internet Protocol Version 4
	Logging
	Port Scan
	Resource Monitor
	Sniffer
	Named Pipe Testing
	Traceroute
	Transmission Control Protocol
	User Datagram Protocol

	Summary

	Evaluation
	Detection of Anomalies
	Unusual Traceroute Path
	Hop Time
	Port Scanning
	Unusual Packets

	CPU and Memory Requirements
	Traffic Generated
	Traceroute
	Trade Offs

	Modularity and Extendability
	Ease of Extension

	Summary

	Conclusions
	Future Work
	Final Words

	Bibliography
	Appendices
	Anomalous Traceroute Output
	High RTT Output
	Port Scan Output
	Unusual Packet Output
	The Pirate Bay Interception

	Project Proposal

