A Heterogeneous
Parallel Programming
Language and Compiler
Architecture

Nicholas Tomlinson

14 June 2013

We present Polycute: an imperative-like pro-
gramming language with block structures that
have parallel semantics, no requirement for a
global shared memory, and data structures and
types that support the resultant programming
paradigm. We set out the goals for such a pro-
gramming language that we argue are necessary
for such a language to be intuitive to program-
mers. We show that Polycute’s block structures
allow programmers to compose code fragments
that are parallel in nature in much the same way
as they would sequential code fragments.

Today’s computers are becoming increasingly paral-
lel in nature, owing to limitations imposed by limits of
instruction-level parallelism and design team size prevent-
ing the creation of ever higher performance superscalar
processors. If processors become more parallel, then pro-
grammers are required to write parallel programs. Un-
fortunately, today’s programming languages do not allow
programmers to write parallel programs in an intuitive
way while permitting the compiler to optimise what par-
allelism is exploited, and how it is exploited.

This project aims to answer the following questions:
How might a programming language be designed that al-
lows the programmer to use their intuition about how pro-
grams should be written to write parallel programs? How
might we design a compiler to compile and optimise that
language to several different targets that interact with
each other? We show that:

e Parallelisation primitives can be expressed syntacti-
cally as control-flow-like statements that are similar
in vein to an if statement or while statement.

e A static type system can be leveraged to express how
parallel access to a variable should take place — in
particular, to facilitate associating a mutex with a
variable.

e Many of the thread-synchronisation operations that
often appear in parallel code can be expressed as
control-flow-like statements.

e Polycute’s type system, and parallelising primitives
allow code fragments to be written that can be com-
posed even when part or all of them are to be ex-
ecuted in parallel. In this context, we define com-
position to be the act of using two separate pieces
of code to produce the effect that the programmer
expects would result from combining them.

e The Polycute language permits implementation of a
compiler that can produce programs for a NUMA
(Non-Uniform Memory Access) architecture such
as that found on a computing cluster, or a CPU
and GPGPU (General Purpose Graphics Processing
Unit) combination.

e By treating parallelisation structures as indications
that code can be parallelised rather than that it must
be parallelised, we are able to perform optimisations
that we could not perform had we chosen to make
parallelisation mandatory.

We observe that an important aid to programmers’ in-
tuition when writing sequential programs is that code
fragments can be composed. A programmer expects, for
example, that if two statements are executed on after an-
other, then the first statement will transform the pro-
gram’s state in some fashion, and the second statement
will transform the resulting state in some way consistent
with the result of the first statement. We can reason
about such sequences of statements with Hoare-logic[5],
and programmers often have a strong intuition of the
properties that this type of reasoning leads to even if
they have not studied it theoretically. The programmer
would expect, for example, that if the first statement en-
sured that the program’s state met the second statement’s
precondition, then the second statement’s postcondition
would be met immediately upon completion of the second
statement. These properties are often used by the pro-
grammer to enable them to decompose a program such
that only a small part of it need be examined at a given
time in order to understand its operation. This is an im-
portant aid the programmer’s ability to understand the
program.

Unfortunately, many of these intuitions break down
when writing parallel programs. This problem is com-
pounded by parallel programming paradigms that do not
attempt to modify this reasoning to suit parallel pro-
gramming, and thus the programmer is forced to abandon
their intuition entirely. Rely-guarantee reasoning extends
Hoare-logic to account for parallelism — adding a con-
dition that will be satisfied by the statement during its
execution, and a condition that must be satisfied by all
other statements executing at the same time[4]. Such a
condition might be that no other statement may modify
a variable while the statement is executing.

Unfortunately, most imperative programming lan-
guages do not implement parallelism in a way that is eas-
ily composed. Examples of existing imperative program-
ming languages that implement parallelism are given in

UL W N

Section 6, along with a critique of their support for paral-
lelism. We have therefore designed Polycute to provide a
set of statements that instruct the compiler that it has the
option to parallelise its child statement. This approach,
along with a suitable type system, allows code fragments
to be composed.

Modern commodity computers contain powerful graph-
ics cards that are capable of general purpose computa-
tion. These graphics cards support a style of computation
known as GPGPU computation that is intended for highly
parallel applications. We drop the language assumption
of a global shared memory in order to produce a language
that allows a compiler to easily schedule appropriate code
to run on a GPGPU. A GPGPU often has a memory that
is disjoint from the computer’s main memory. We choose
a generalised approach to partitioning work between pro-
cessors with disjoint memories. This makes Polycute a
candidate for extension to write programs that can run
on a cluster of computers. Polycute’s expression of paral-
lelism allows a compiler to produce code that is well suited
to run on either a GPGPU or a multi-threaded CPU.

1 The Polycute Language

The Polycute programming language is strongly influ-
enced by the C programming language, but with concepts
that are amenable to parallel programming. We have pri-
oritised improving the language over dogmatically repro-
ducing C. A detailed comparison of the parallel program-
ming languages is presented in Section 6.

1.1 Notation and Language Concepts

To understand our description of Polycute’s novel fea-
tures, we have provided a very quick primer to Poly-
cute’s syntax. We will also introduce the notation we
use throughout the remainder of this report.

We use boldface when referring to Polycute key-
words. Where a word is to be used in a particular way
in Polycute’s grammar, we specify the non-terminal in
CAPITAL-TELETYPED-ITALICS. Table 1 describes the
non-terminals that we use. Table 2 describes some of
Polycute’s keywords and constructions, and their usage.

1.2 For

Polycute’s for loop is provided for the programmer’s con-
venience, but also as a way for the programmer to express
a loop that is guaranteed to have an iteration count that
is known at entry to the loop. When used with spawn,
the compiler can be sure that parallelising the loop will
not affect the control flow of the loop itself.

int 32 i = 0;

int 32 sum = 0;

while (i <
sum 4= 1i;

K
i+ 1;

i =

=W N =

Non-terminal
EXPRESSION

Description

A Polycute expression. An expres-
sion (for example, a function call)
may have side effects.

Statements such as those that would
be found in a C program. Addi-
tionally, this includes blocks such
as those used by C, and statements
such as while statements. An
EXPRESSION may also be used as
a STATEMENT.

A Polycute type. Polycute types
should be read left to right, with
each subsequent type modifier wrap-
ping the already specified type. For
example: bool lock pointer is a
pointer to a locked boolean, whereas
bool pointer lock is a locked
pointer to a boolean.

STATEMENT

TYPE

Table 1: Non-terminals used in our description of Poly-
cute

Listing 1: A while loop with a fixed iteration count

The code examples given in Listing 1 and Listing 2 are
equivalent. The for loop is a good candidate to optimise
code to. An example of such code is given in Listing 1.
The optimised version is given in Listing 2. Once the
loop is expressed as a for loop, the compiler may per-
form subsequent optimisations as if the while loop had
been tagged as suitable for such optimisations. Further,
the programmer may notice that such an optimisation is
possible and can easily perform this optimisation by hand
where the compiler cannot (for example, if a reference to
the loop counter is passed, but known never to be up-
dated).

int 32 sum = 0}
for (int 32 i to
sum += i;

1024){

Listing 2: A for loop equivalent to Listing 1

1.3 Spawn and Sync

Like the Cilk programming language (see Section 6.4),
Polycute has the keywords spawn and sync. In Poly-
cute, both the spawn and sync constructs have a child
statement, as opposed to Cilk, where spawn may only be
used as a modifier for a function call, and sync is used
to wait for all previously spawned functions without any
further structure. This is an important part of Polycute’s
design. Just as an if statement or while loop in C has a
statement or block associated with it, so too do Polycute
spawn and sync statements.

Constructions

Description

if STATEMENT,
while STATEMENT

Analogous to C.

for (TYPE IDENTIFIER
to EXPRESSION)
STATEMENT

Executes STATEMENT n
times, where n is calcu-
lated at entry to the loop
to be the EXPRESSION.
The loop wvariable is
named by IDENTIFIER
and takes a value between
0 and n — 1, in ascending
order. Assignments to
the loop wvariable do
not affect subsequent
iterations.

spawn STATEMENT,
sync STATEMENT

Used for parallelism,
and is described in
Section 1.3.

TYPE lock,
atomic,
atomic reeval,
release

These are used to al-
low operations on data
structures to be paral-
lelised correctly, and are
described in Section 1.4.

TYPE []

A “dynamic vector” type
— so called because its
size and the memory it
is located in (for exam-
ple, CPU or GPU) are
determined at run time.
Dynamic vectors are de-
scribed in Section 1.5.

TYPE ref

A reference type. Sim-
ilar to C++’s reference
type, except that a refer-
ence may refer to a vari-
able that is not in the lo-
cal memory.

Table 2: Polycute keywords and constructions

O O 00O Ut WN

[y

© 00 O Ut W~

—_
o

11
12
13
14
15
16
17
18
19
20
21
22
23

This allows spawn to operate on any statement, rather
than just function calls. As a result, it is possible to add
the spawn keyword to suitable sequential code (such as a
block statement) without significant restructuring of the
code.

Unlike in Cilk, Polycute’s sync statement waits only
for spawns that are nested within the sync statement,
or a function that is consequently called. This allows
code with spawn and sync statements to be composed
without losing the ability for child sync statements to
wait only for their child spawn statements. Consider the
example given in Listing 3. All four iterations of the loop
may execute in parallel, despite the sync statements in
the body of the loop. In Cilk, using sync in the second
iteration of the loop would wait for the entire of the first
iteration of the loop to complete.

-
sync for (int 32

i to 4) spawn {
sync {
spawn a ();
spawn b ();
}
sync {
spawn ¢ ();
spawn d ();
}
}
L

Listing 3: An example to demonstrate the utility of
structured sync statements

Consider implementing merge sort recursively. On very
large data sets, we may wish to partition the data set to
be processed in different threads. We would not, however,
wish to process small partitions in parallel, as this would
be inefficient. The programmer might therefore wish to
write code such as that given in Listing 4. This is cum-
bersome — the code must be specified twice! Although
Listing 4 is not too obnoxious to duplicate, a more com-
plex example than a function call might be unacceptable
to use this way.

-
void MergeSort
(int 32 n, int 32 off, int 32 [] ref array)
{
/* Code to sort if length(array) <= 2 x/
bool should_spawn = n > 10000;
if (should_spawn){
//The array is large enough to be worth
//processing in parallel
sync {
spawn MergeSort(n/2, off, array);
spawn MergeSort
(n — n/2, off + n/2, array);
}
else {
spawn MergeSort (n/2, offs, array);
spawn MergeSort
(n — n/2, offs + n/2, array);
}
/* Code to merge the two halves x/
}

0O Utk W -

0O Ut WK

N

N

J

Listing 4: Merge sort with conditional parallelisation us-
ing an if statement

Both the spawn and sync statements have two forms:
conditional, and unconditional. In their conditional form,
their parallel semantics apply if and only if the condi-
tion is true. This relieves the code duplication problem
that occurs in Listing 4. For spawn, the child statement
may execute in parallel if the condition is true, but must
execute sequentially if the condition is false. For sync,
execution may not proceed beyond the end of the sync
statement until its child spawns are completed if the con-
dition is true, but it may proceed if the condition is false.
Listing 5 demonstrates the conditional variants of spawn
and sync.

void MergeSort

(int 32 n, int 32 off, int 32 [] ref array)
{
/* Code to sort if length(array) <= 2 x/
bool should_spawn = n > 10000;
//The array is large enough to be worth
//processing in parallel
sync (should_spawn) {
spawn (should_spawn) MergeSort
(n/2, off, array);
spawn (should_spawn) MergeSort
(n — n/2, off + n/2, array);
}
/* Code to merge the two halves x/
}

Listing 5: Merge sort with conditional parallelisation us-
ing the conditional variants of sync and spawn

We have chosen to allow a function to use a spawn
statement without being nested in a sync statement.
This has two advantages: Firstly, the programmer may
divide their code arbitrarily rather than being compelled
to ensure the sync statement is in the same function as
the spawn statement. The programmer may wish, for ex-
ample, to have a set of functions that have several spawn
statements, with the intention that these functions be
used with a sync statement in the caller (or indeed the
caller’s caller). Secondly, there may be no instructions
outside of the spawn statement that cannot begin un-
til the spawn statement has ended. Consider Listing 6.
Here, we have a server program that spawns upon re-
ceipt of a client connection. The rest of the program flow
is then unconcerned with when the spawned statement
completes.

Listing 6: Server program demonstrating a spawn with-
out a sync

We have chosen not to implement function annotations
to indicate that a function may spawn without syncing,
similar to Java’s throws annotation for uncaught excep-
tions. This would be cumbersome, and is an arbitrary
side effect to choose to annotate — particularly in light of
programs such as the one in Listing 6. It is not neces-
sary to be concerned about sync statements that do not
contain any spawn statements, as such a sync statement
would have no effect on the semantics of the program.

1.4 Lock and Atomic

In order to allow the programmer to express the rely and
guarantee conditions from rely-guarantee reasoningl[4],
Polycute includes a set of features to allow the program-
mer to place limits on how two statements may mutate
the program’s state concurrently.

In Polycute, lock is a type qualifier. The type
TYPE lock is a TYPE that has an associated lock. This
lock is semantically taken whenever a variable of this type
is read from, or written to, and freed afterwards. It is up
to the compiler to determine exactly when the lock is
taken and freed, however the behaviour of the program
should be consistent with that which would result if the
lock operations were performed immediately before and
after the variable access. This ensures the entire variable
is read from or written to in a consistent way — with no
other thread modifying the value during the read or write
operation.

The programmer may wish to carry out operations that
involve many read and write accesses in a consistent way;
atomic STATEMENT ensures that all variable accesses in
STATEMENT are consistent with having been performed
atomically. Variables that are read from in STATEMENT
are not written to at any time while STATEMENT is ex-
ecuted. Variables that are written to in STATEMENT
are neither read from nor written to at any time while
STATEMENT is executed.

Listing 7 demonstrates a parallelised increment oper-
ation. The locks for both a and b are acquired at the
beginning of the atomic statement — before any read or
write operation occurs. The lock for b is taken even if
a < 42, as the decision to lock b is based on syntactic
analysis of the code at compile time. The locks are not
unlocked until the end of atomic statement — after all
read and write operations have taken place — including
those that might be made by function calls if present.

void ServerProgram ()

while (true){
struct Connection connection
WaitForConnection ();
spawn ProcessConnection (connection);

0O Uk WN

32 lock
32 lock

32

0
1

int
int
for (int

a = a

if (a

b
}

>
to 1000) spawn atomic {

)

+
S o)

> 42

b;

Listing 7: Atomic operation on a and b

An atomic statement also acquires the lock for each
TYPE lock ref type variable that could (and is by syn-
tactic analysis) be dereferenced. As with non-reference
variables, the set of references is that which could be
taken given syntactic analysis of the code. The value of
each reference is taken to be that at the beginning of the
atomic statement. Null references, and references that
are declared within the atomic statement are not taken,
as neither refer to locks that are available at entry to the
atomic statement. This rule is necessary to allow refer-
ences to variables of a lock type to be used correctly. If
a function returns from within an atomic statement, the
locks it has taken are unlocked.

Consider the problem of inserting into a linked list. It is
not possible to be certain, ahead of time, which elements
of the list will be accessed, and thus must be locked. Re-
cursively locking all references that could be taken would
at best allow most of the program’s state to be locked, and
at worst be undecidable. Polycute supports two compan-
ions to atomic: the release STATEMENT and the reeval
modifier. The release statement and atomic reeval
statement are designed to be used together to enable the
programmer to traverse a structure of locks without hav-
ing to lock the entire structure but always maintaining a
lock on some part of it in a similar manner to that sug-
gested by Moir and Shavit[7]. Such an algorithm written
in Polycute is presented in Listing 8.

Once the first lock has been taken, at least one lock is
held until the end of the release STATEMENT is reached,
at which time all locks that are still locked by STATEMENT
are unlocked. The set of locks held is reevaluated at
the end of the atomic reeval STATEMENT by iterat-
ing through the list of acquired locks, and determining
whether they are still required. For each lock that is
locked by the STATEMENT and that is syntactically ac-
cessed in a hypothetical subsequent iteration, the lock re-
mains locked. This ensures no other thread can take the
lock between iterations of the loop. If the variable is no
longer syntactically accessible (for example, because the
value of head is updated in the STATEMENT), the lock
is released. Any new locks that have become accessible
are also locked at the end of the atomic reeval state-
ment — in a predetermined order to avoid deadlock. In
this context, a lock is accessible if it would be taken at
the beginning of the atomic reeval statement. To make
this determination, it is assumed that the atomic reeval
statement will execute again, and that the values of the
references do not change. It is important that new locks
are acquired before old locks are unlocked, otherwise an-
other thread may acquire an old lock and a new lock while
no locks are held by the atomic reeval statement. The
set of held locks is reevaluated in the same way the next
time the atomic reeval STATEMENT is executed so that
the correct locks are held upon entry to the STATEMENT.

© 00 O Ut W

00O~ O Ui W

-
struct ListElement

{
int 32 element;
struct ListElement lock ref next;
}
/*
It is safe to call this function with the
same head (or subsequent element) from
different threads at the same time. For
simplicity , we assume head is not null.
*/
void Insert (
struct ListElement lock ref head,
int 32 element)
{
release while (head != null) atomic reeval
if (head—>next == null){
head—>next = NewElement (element);
head = null;
else if ((head—>element < element) &
(head—>next—>element) >= element){
struct ListElement lock ref new =
NewElement (element) ;
new—>next = head—>next;
head—>next = new;
head = null;
else {
head = head—>next;
}
}
}

Listing 8: Thread-safe linked list insertion

As with spawn and sync, Polycute places no require-
ment that the release statement should appear in the
same function as the atomic reeval statement as the
programmer may wish to place the release in a caller
function.

The design of Polycute aims to prevent the creation of
programs that can deadlock, however this is not always
possible. Allowing a statement to exist between the re-
lease and the atomic reeval introduces the possibility
of deadlock as an atomic statement could attempt to
obtain locks that have not been released by a previous
atomic reeval statement. Such a bug is exhibited by
Listing 9. The use of reeval should therefore be a re-
minder to the programmer that they should be careful to
design their code such that it will not deadlock.

-
void Deadlock (int 32 lock

ref 1)
{

release

{

atomic reeval {
deref (i) = deref (i) + 1;

/+* The lock associated with i is not
released until the end of the
release statement , but an attempt
is made to reacquire the lock in the

next atomic statement x/

15
16
17
18
19

00O UL W

atomic {
deref (i) = deref (i) + 1;
}

}

Listing 9: A program that deadlocks

1.5 Dynamic Vector Type

Many embarrassingly parallel algorithms operate on large
arrays of data. In C, such an array may be allocated with
malloc (), which returns a pointer to memory that it has
allocated in local memory. Polycute programs, however,
may execute in a NUMA environment.

Polycute requires a data type that can reference a large
array of data that may be in local memory, remote mem-
ory, or partitioned over several memories. The data type
used for this purpose is the dynamic vector type —
named dynamic as their size and the memory in which
they are located is determined at run time. The dynamic
vector type has syntax: TYPE []. Listing 10 demon-
strates the usage of the dynamic vector type.

/+* A function that returns a dynamic vector of
int 32 elements x/

int 32 [] GetSquareNumbers(int 32 n)
/% Create a dynamic vector of n int 32
elements */

int 32 [] squares = i

/* 1 ranges from 0 to n — 1 %/
for (int 32 i to length(squares)){
/* Assignment to an element of the
dynamic vector x/
squares[i] = ix*i;

return squares;

}

Listing 10: Ezample usage of the dynamic vector type

Unlike in C, where assignment to a pointer to the first
element of an array results in a second reference to the
same array, dynamic vectors in Polycute have copy se-
mantics; they are considered to be values that are copied
in the same way as any other, such as an integer. A de-
tailed justification for this is given in Section 3.2.

2 Conceptual Implementation

2.1 Spawn and Sync

Polycute’s spawn keyword instructs the compiler that
the child statement may be executed in parallel. In a
heterogeneous environment, there may be many different
types of parallelism that can be enabled by the spawn
statement, for example:

e Threads running on a multicore CPU

© 00 O Ut W~

e Kernels executing on an OpenCL device (see Sec-
tion 6.2)

e Softcores running on an FPGA
e Processes running on remote processors

Selecting which of these forms of parallelism should be se-
lected is partly an optimisation challenge based on where
data is located (see Section 3.2) and establishing whether
such parallelism can be exploited efficiently (see Sec-
tion 3.1).

The simplest implementation of spawn on a multicore
CPU is that of a thread pool and a job queue. Each time
a spawn statement is executed, a job is created with the
spawn statement’s child statement. In order to support
the sync statement, each job must be added to a list for
its parent sync statement. The sync statement must also
be added to the list of its parent sync statement in order
to avoid having to add jobs to all parent sync statements’
lists.

An OpenCL kernel is a piece of code that is executes
many times with the same set of arguments, save for a
small number of indexes. Polycute’s for loop is a good
conceptual match for this. Subject to several restrictions
on the code to be executed, the for/spawn structure can
be converted to an OpenCL kernel, in addition to the
usual CPU code. When the loop is to be executed, the
runtime determines whether to execute the CPU loop, or
the OpenCL kernel.

As with OpenCL kernels, FPGA softcores and remote
processes have restrictions on the code that may be exe-
cuted on them. The trade-offs in each case are different,
and are discussed in Section 3.1.

2.2 Lock and Atomic

It is desirable to minimise the opportunity for a program
to enter deadlock, and in any case provide a clear set of
rules to avoid it. Therefore, an atomic STATEMENT ac-
quires its locks in a well defined order. This is a standard
solution to the Dining Philosophers Problem|[6].

In order to permit nested atomic STATEMENTS such as
in Listing 11, the compiler may have to create second locks
for a and b at the beginning of the outer block in order for
the child spawn atomic statements to be able to lock the
shared a, and b while preserving the atomicity of the their
child atomic statements. The child atomic statement
then acquires this second lock, rather than attempting to
acquire the original lock which has already been acquired
by the outer atomic statement.

-
spawn atomic sync {
spawn atomic {
a = b;

c = d;

spawn atomic {
a = e;

b f;

10 L}

00O UL WN

Listing 11: Nested spawn/atomic statements

In order to allow the atomic statement to have the
correct effect for dereferences that occur within function
calls, the compiler must handle locks acquired by the
callee as it would a child statement. An example of this
is given in Listing 12.

void Callee (int 32 lock ref n)
{
deref n = 42;
}
void Caller (int 32 ref lock n)
{
/%
Observe that b is not dereferenced in
the atomic statement, unless the body
of Callee() is considered
*/
atomic Callee(n);
}

J

Listing 12: Callee()’s use of deref n requires that n
be locked, even though it is not dereferenced by Caller()

This would require helper functions to be generated by
the compiler if the callee is imported or exported. These
helper functions would give the caller information about
locks that must be acquired if the callee is called from
within an atomic statement. In order to allow Polycute’s
function pointer to be represented as a single pointer, a
Polycute function pointer is a pointer to a structure de-
scribing the Polycute function. An example of this struc-
ture is given in Figure 1. Any of the function pointers
except the body function pointer may be null.

4 Body Function Pointer)
Atomic Helper Function Pointer

\Release Helper Function Pointer ")

Figure 1: The structure pointed to by a Polycute func-
tion pointer

To support atomic reeval statements and release
statements, we must maintain a list of acquired locks
for each atomic reeval statement. A release state-
ment is able to access the list of locks for each child
atomic reeval statement not nested closer to another
release statement. At the end of the release statement,
the generated program traverses each list of locks, and
unlocks them. Upon entry to an atomic reeval state-
ment, the set of locks required is reevaluated, and any
locks that are required and have not already been taken
are acquired in a predetermined order, and added to the
list of acquired locks. At the end of the atomic reeval
statement, the set of required locks is reevaluated, and
any locks not already held are acquired, before those no
longer required are unlocked. The list of locks is kept for
the entire duration of the release statement. Any data
structure that is able to store a set of mutexes may be

used to track the acquired locks. A linked list is suitable,
as there is no requirement for random access; traversal
need only occur from the beginning of the list to the end.

2.3 Dynamic Vector Type

The dynamic vector type is implemented as a structure
that may have different forms. We shall call this struc-
ture “dynvec”, and variants of it “dynvec_form” where
“form” is a specific form. Each dynvec object contains
standard information: element size and element count,
and information that specifies where the vector is stored.
This latter information takes a different form depending
on what memories the vector is stored on. Figure 2 shows
the general form of a dynvec object.

AT
Type

Element Count

Element Size

Location

Figure 2: General form of a dynvec object

An important concept to enable vectors to work with
a NUMA architecture is that it must be possible to rep-
resent different types of memory locations — from a local
memory pointer to a split memory layout where different
parts of the vector are held in different memories. This is
why a dynvec may be one of several different forms.

The simplest case — a vector held in local memory — is
shown in Figure 3. The location field is a pointer to local
memory. The structure of that memory is that of a C
array.

AT
Type

Element Count

Element Size

Local Pointer

A dynvec_local object referencing local

Figure 3:
memory

Consider a vector that is stored partly on a GPU, and
partly in main memory. This might happen, for example,
if processing a vector with a length that is not a multiple
of the SIMD width, or if using both the CPU and the
GPU to process the vector. In this case, it is necessary to
store a pointer to the CPU data, the location on the GPU
of GPU data, and the location of the split. If the CPU
always processes the end of the array when its length is
not a multiple of the GPU’s SIMD width, the structure
looks like Figure 4. In principle, one could write to any
element of a vector such as this by determining whether
the element is in CPU memory or GPU memory and is-
suing the appropriate command to the GPU in the latter
case. Unfortunately, writing a single element to the GPU
in this fashion is inefficient. Efficient implementation of
dynamic vectors is discussed in Section 3.2.

Type
Element Count

Element Size

CPU Offset

CPU Pointer
\OpenCL Memory Obj ect)

Figure 4: A dynvec_gpu_cpu object referencing both
CPU and GPU memory

In a more general case, it may be necessary to store a
list of vector fragment locations. An example of this is
given in Figure 5.

TR
Type
Element Count

(GPU Type | Offset | OpenCL Memory Object\
CPU Type | Offset | Local Pointer
S List _)—»{ Remote Type Offset | Memory Fragment ID

Element Size

Remote Type | Offset | Memory Fragment ID

Null Type

AN J

Figure 5: A dynvec_many object referencing several
memories

A sophisticated compiler might use other dynvec
forms to efficiently handle different processing patterns
and computing environments. As a result, the compiler
and runtime library should be written such that it is pos-
sible for optimisers to add forms of dynvec.

In a NUMA architecture, there is a trade-off between
processing data where the data is already located, and
moving the data to where the data can be most efficiently
processed.

2.4 Compiler Architecture

The Polycute compiler is designed to be sufficiently exten-
sible to allow for the easy addition of optimisations and
target languages. Our implementation of the Polycute
compiler consists of six stages:

Tokenization We use Flex for tokenization.

Parsing We use Bison for tokenization. This stage pro-
duces an AST (abstract syntax tree) with default
code generator objects for each node, but no type
checking, or name dereferencing. The default code
generator objects generate LLVM Intermediate Rep-
resentation (LLVM IR).

Name Dereferencing Nodes in the AST which refer-
ence other nodes by a string (such as an identifier
referring to a variable declaration or function decla-
ration, or struct type referring to a struct declara-
tion) have pointers to the nodes to which they refer.
After the parsing stage, these are null pointer. The

name dereferencing stage sets these pointers to point
to the correct nodes.

Normalization Produces an AST that has been type
checked, and where implied type cast operations have
been inserted. Some types, such as the lock type,
have implicit operators attached to each access of
variables of that type. These implicit operators are
similar to Polycute’s deref, except that they are im-
plied from the variable type rather than explicitly
stated in the Polycute language. The normalization
stage is responsible for ensuring these implied op-
erators are present where and only where they are
required.

Optimisation Performs optimisation from Polycute
AST representation to Polycute AST representation.
Some optimisations require the name dereferencing
and normalization stages to be rerun for a sub-tree
of the AST. It is this stage that would replace the
default code generator objects with ones to gener-
ate different target code, such as OpenCL. Such an
optimisation might copy a sub-tree of the AST, and
replace the code generation objects in the copy. This
would produce a program that can execute that piece
of code both on the CPU, or the GPU.

Code Generation This stage generates the LLVM IR
code. If it had been implemented, it would also
generate OpenCL code, or code for any other im-
plemented language. The compiler can also produce
a Polycute-like pseudo-code to aid the debugging of
optimisers.

3 Efficient Implementation and
Optimisation

3.1 Spawn and Sync

Consider a kernel-like loop such as that in Listing 13 to
be executed on a GPGPU. Such a loop is ideal for exe-
cution as a kernel: it consists of a large and predictable
number of iterations that are independent of each other.
Unfortunately, if the same piece of code is to be run on
a CPU, the resulting code would be extremely inefficient
if a job were created and added to the job queue for each
iteration. If there are no statements that must be exe-
cuted sequentially between issuing different iterations of
the loop, Listing 13 could be optimised to Listing 14. This
optimisation is made possible by the fact that Polycute’s
spawn statement does not mandate the compiler to run
code in parallel. This is also an example of an optimisa-
tion that relies on structured parallelism, and could not
easily be performed had the parallelism been expressed
using pthreads primitives. It is also an optimisation that
is tedious to perform by hand.

1 (/* Each element of array can be calculated in

= O OO Uk WN

—

0O Utk WN -

not proceed beyond

until all
This is

*/

parallel. Execution does

the end of the sync statement

elements have been calculated.

equivalent to a kernel in OpenCL.
sync for (int 32 i to 1024){

for (int 32 j to 1024) spawn {
array [1 * 1024 + j] =

exp (array [1x1024 + j])/(i*xi 4+ j*j);

}

Listing 13: A kernel-like piece of code to calculate e
for each element, x = A;;, of an array

sync {
/* Execute most of the
different threads =/
//Spawn some number of times
spawn for (int 32 thread to job_count()) {
//Iterate over part of the array
//a is an identifier
//choice
for (int 32 a to 1024/job_count ()){
//Determine i from thread and a
int 32 i =
thread*(1024/job_count ()) + a;
//iterate over j as normal
for (int 32 j to 1024) {
//Calculate the new array
//element; not how this code
//does not need to change

iterations in

of the compiler’s

array [1 % 1024 4+ j]
exp (array [1%1024 + j])/
(=i 4+ jxj);
}
}
}
/* We generated efficient code above, but
it only works in multiples of
job_count (). So, we need to finish off

the remainder of the iterations x/
spawn for (int 32 a to 1024 —
(1024/job_count ())){

//determine i from a

int 32 i = a 4+ (1024/job_count ());
for (int 32 j to 1024) {
array [1 % 1024 + j] =
exp (array [1%1024 + j])/
(ixi + j*j);
}
}
}
J
Listing 14: CPU optimised code to calculate % for

each element, v = A;j;, of an array

3.2 Dynamic Vector Type

When a dynamic vector variable is assigned to, the vector
is copied. An example of this is when a dynamic vector
is used as an argument to a function, where its seman-
tics are that of pass by value. This is much simpler to
implement than a reference-counting approach that one
might be tempted to employ in order to avoid unneces-
sary copying. Such reference counting would also require
mutex operations to be performed whenever an an assign-
ment is performed — not only to a dynamic vector variable,

OO Utk W~

OO Ui W

but also when assigning to a single element of a dynamic
vector. Instead, the compiler should optimise copies of
dynamic a vector to be references to the dynamic vector
where possible.

int 32 [] Fn(int 32 [] a, int 32 [] b)
{
int 32 [] r = int 32 [length(a)];
for (int 32 i to length(a)){
r[i] = a[i] + b[i];
if (i + 1 < length(a)){
bli + 1] = r[i];
}
return r;
}
void Process(int 32 len)
{
int 32 [] a = int 32 [len];
int 32 [] b = int 32 [len];
//Initialise a and b
int 32 [] ¢ = Fn(a, b);
//do something with ¢
¢

Listing 15: Unoptimised function call that copies dy-
namic vectors unnecessarily

Consider Listing 15. We may optimise the return value
to a reference to avoid the naive copying that otherwise
occurs (return r results in a copy). We may also op-
timise a to a reference, as it is never written to by Fn.
We must copy b, however, as it is written to by Fn, so
optimising it to a reference would change the semantics
of the program. The optimised version is given in List-
ing 16. We could perform the return value optimisation
across translation units, provided the compiler performs
the optimisation for all translation units. The parame-
ter optimisation requires a change to the caller that is
dependent on the behaviour of the callee, and thus can-
not be optimised in the same way across translation units
without whole-program optimisation.

-
void Fn(int 32 [] ref r, ref a,

int 32 [] b)

int 32 []

deref(r) = int 32
for (int 32 i to length(

[longth(
a)
deref(r)[i] = deref(a))

)15
{
i] + b[i];
if (i + 1 < length(a)

)
[
{
b[i + 1] =)
}

deref(r)[i];

}

void Process(int

{

32 len)

int 32 [] a = int 32
int 32 [] b = int 32
//Initialise a and b

[len];
[len];

int 32 [] c;
Fn(ref c, ref a, b);

//do something with c¢

Listing 16: Optimised version of Listing 15

00O Ui W

4 Evaluation

One of the aims of Polycute is to enable programmers
to write efficient parallel code without the need to hand
optimise it. In this section, we compare the execution
times of the code generated by Polycute, GCC, Clang, and
GCC with OpenMP for a selection of example programs.
The machine on which these tests are performed has an
Intel 13770k processor. This processor has four cores, each
capable of executing two threads.

For each example, equivalent C (or C++) and Polycute
programs have been written, generally by direct transla-
tion of a program written in one language to the other.
In some cases, we have tried minor variations of the pro-
grams, such as to move a Polycute spawn or an OpenMP
#pragma omp parallel for from an inner loop to
an outer loop. This is an example of a hand optimisation
that should not be required, but that we find improves
the performance of OpenMP programs.

4.1 Mandelbrot Set

Of the three examples presented here, calculation of the
Mandelbrot set is the most amenable to parallelisation
on a CPU. To make this example more computationally
expensive, this function uses oversampling — calculating
256 samples for every pixel. The problem can be split
into many large sub-problems that can execute in paral-
lel. This contrasts with the RBM example given in Sec-
tion 4.3.

Figure 6 compares the execution time of the Polycute
program given in Listing 17 with the equivalent C and
OpenMP programs compiled with GCC and Clang. The
edited versions correspond to the hand optimisation of
moving the spawn or #pragma omp parallel for
from an inner loop to an outer loop.

The Polycute implementation of this program performs
significantly better than the OpenMP version: at least
9.0 s at the 95% confidence level. GCC’s OpenMP com-
piler is unable to move the parallelisation pragma; when
moved by the programmer, the execution time of the pro-
gram reduces by at least 4.3 s at the 95% confidence level.

~

int 8 [] Mandelbrot
(int 32 width, int 32 height)

{
int 8 [] image = int & [width % height];
int 32 factor = 16;

sync for (int 32 imgy to height) {
for (int 32 imgx to width) spawn {
int 32 total = 0;

for (int 32 suby to factor){
for (int 32 subx to factor){
/* Use the escape time
algorithm to calculate
the escape time, i, at
point (imgx, imgy) x*/
total = total 4+ 1i;

20
21
22
23
24
25

27
28
29
30
31

1
2

10

Mandelbrot Execution Times
35

30 B

25

20 |

15

Execution Time (s)

10

Polycute Polycute GCC GCC
Edited OpenMP OpenMP
Edited

Compiler/Program Version
Figure 6: FExecution times for the Mandelbrot set exam-

ple

GCC

Clang

total = tota
if (total >

total =
}

image [(imgy * width) + imgx] =
total;

factor*factor);

NN —
ot

}

return image;

}

Listing 17: A function to calculate the Mandelbrot set

4.2 Merge Sort

Figure 7 demonstrates how Polycute, Clang, GCC, and
GCC with OpenMP compare for the merge sort exam-
ple. Polycute outperforms its nearest contender (sequen-
tial code from GCC) by a factor of 2.1, executing in at
least 5.6 s less time at the 95% confidence level than GCC.
GCC’s OpenMP fares badly — taking 1.7 times as long the
sequential equivalent.

Listing 18 shows the algorithm we used as for this exam-
ple. We use minspawn to prevent the code from creating
jobs that are too small to be efficiently parallelised (the
Polycute compiler does not perform this optimisation).
This is a good example of where the conditional seman-
tics of spawn are useful. We implemented this behaviour
in the OpenMP version of this example, but could not im-
prove upon the sequential code, despite trying to optimise
the value of minspawn.

(void MergeSort (int 64 n, int 32 pointer al,

int 32 pointer a2)

© 00O Utk W

10

12
13
14
15
16

18
19
20
21
22

Merge Sort Execution Times
20

16 - B

12 B

Execution Time (s)
=
o
T

8 [.
6 | 4
4 + N
2+ .
0
Polycute GCC GCC Clang
OpenMP
Compiler

Figure 7: Ezxecution times for the merge sort example

if (n < 8){
BubbleSort (n, al);

}

if (n>=28) {
int 64 partition =
int 64 minspawn =

n/2;
10000;

sync (n > minspawn) {
spawn (n > minspawn)
Sort (partition, al, a2);

spawn (n > minspawn)
Sort(n — partition ,
AddPointer (al,
AddPointer (a2,

partition),
partition));

}

//Merge the two sorted halve

}

Listing 18: The sorting algorithm we used for this ex-
ample

4.3 RBM

Figure 7 demonstrates how Polycute, Clang, GCC, and
GCC with OpenMP compare for the RBM example. The
RBM example is a memory intensive one — where an iter-
ation performs a small amount of work on each element
of a large array, compared to the Mandelbrot set example
where calculation of each element of the array is much
more CPU intensive. We found this example to be very
sensitive to the placement of parallelisation instructions,
so there are minor differences between the OpenMP and
Polycute programs that we feel correspond to reasonable
(not tedious to perform) programmer attempts at hand
optimisation. In this example, the OpenMP version of the
program executes in half the time of the other versions.

0O Utk W~

RBM Execution Times
100

80 -

60 -

40

Execution Time (s)

20 +~

GCC
OpenMP

GCC

Polycute Clang

Compiler

Figure 8: Ezecution times for the RBM example

The computationally expensive part of the RBM exam-
ple is primarily floating point manipulation. An outline
of the algorithm for this example is given in Listing 19.

void CalculateVisible (struct RBM ref rbm,

float 32 [] ref visible,

float 32 [] ref hidden)
{

/* Initialise visible to zero, and if we
should , apply the function to hidden to
get values of either 0.0 or 1.0 =/

sync for (int 32 v to rbm—>visible_size)

spawn {
for (int 32 h to rbm—>hidden_size){
(deref visible)[v] =
(deref visible)[v] +
(rbm—>weights
[v * rbm—>hidden_size + h]

* (deref hidden)[h]);

}

}

for (int 32 i to rbm—>visible_size){
(deref visible)[i] =

Function ((deref visible)[i] +
rbm—>visible_biases [i]);

}

/* If we should, apply the function to
visible to get values of either 0.0 or
1.0 %/

}

/% CalculateHidden works the same way as
CalculateVisible x*/

void Train(struct RBM ref rbm,
float 32 rate)

float 32 [] vO,

/* If we should,
visible to get values
1.0 %/

apply the function to
of either 0.0 or

float 32 [] hO =
float 32 [rbm—>hidden_size];
float 32 [] vl =
float 32 [rbm—>visible_size];
float 32 [] hl =
float 32 [rbm—>hidden_size];
CalculateHidden (rbm, ref v0, ref hO);
CalculateVisible (rbm, ref v1, ref h0);
CalculateHidden (rbm, ref v1, ref hl);
sync {
for (int 32 v to rbm—>visible_size)
spawn {
for (int 32 h to rbm—>hidden_size){
rbm—>weights
[v * rbm—>hidden_size + h]=
rbm—>weights
[v * rbm—>hidden_size + h]+
(rate * ((vO[v] = hO[h]) —
(vi[v] = hi[])));
}
}

for (int 32 i to rbm—>hidden_size){
rbm—>hidden_biases [i] =

rbm—>hidden_biases[i] +

)

(rate * (hO[i] — h1[i]));
}
for (int 32 i to rbm—>visible_size){
rbm—>visible_biases [i] =
rbm—>visible_biases [1] +
(rate * (vO[i] — v1[i]));
}

}
J

Listing 19: The computationally expensive part of the
RBM algorithm

Upon disassembly of the resulting binary, we discovered
that GCC’s OpenMP code uses many fewer floating point
instructions compared to its sequential code. The x86 in-
struction set has several SIMD floating point extensions.
Today, the most powerful of these are SSE and AVX. SSE
uses 128-bit registers, while AVX uses 256-bit registers.
GCC uses AVX and SSE registers, whereas LLVM uses
only SSE registers. We suspect that the performance of
the Polycute code might improve if we improved our code
generator to take account of vectorisable loops. We also
suspect that both the Clang code and the Polycute code
might improve if LLVM were to generate instructions us-
ing AVX’s registers. Table 3 summarises our findings for
the floating point instructions generated for each version.
Note that both Polycute and Clang use LLVM as a back
end.

5 Further Work

This report has been informed by our implementation of a
compiler for the Polycute language we describe. It repre-
sents our current thinking for how the Polycute language
should be designed, however the compiler itself lags be-
hind this, with some features not yet implemented. From

12

Compiler Instruction Instruction
Sets Count

Polycute SSE 257

GCC OpenMP SSE and AVX 356

GCC SSE and AVX 770

Clang SSE 264

Table 3: Floating point instructions gemerated by each
compiler

a practical perspective, completing this would improve
our understanding of the trade-offs that must be taken in
Polycute’s design. We could then expand on the Polycute
language, and explore how concepts such as object ori-
ented programming might best be handled in a language
like Polycute without leading to the problems associate
with “spaghetti data”[9].

The current implementation of the Polycute compiler
leaves some questions unresolved — such as how might we
best allocate jobs created by Polycute’s spawn statement
between different machines in a heterogeneous environ-
ment? Could we use an architecture mapping script[3] to
help the compiler do this?

We designed Polycute so that it could produce target
code in several different languages — even from the same
source file. We envisaged, for example, producing LLVM
IR for code to be executed on the CPU, and OpenCL
for code to be executed on the GPU. We have not yet
implemented the OpenCL target code generator, or opti-
misers to make use of it. Once this work is done, we could
consider how we might change the Polycute language to
improve the compiler’s ability to make job allocation de-
cisions.

We have given a flavour of the kinds of optimisations
that can be performed on Polycute programs beyond the
standard optimisations one would expect of any optimis-
ing compiler, however one could devote entire books to
exploring all the imaginable optimisations. The Poly-
cute compiler itself implements only a handful of opti-
misations, so there is much room for further research in
this area.

The authors observe that the Polycute language is a
convenient language to express transformations of paral-
lelism in — not only from Polycute source, but to Poly-
cute source (in much the same way as one could express
code motion as a transformation from a C program to
another C program). Typically, however, it is useful to
have an intermediate representation that is independent
of the programming language (such as LLVM’s intermedi-
ate representation). How might an analogue be developed
for parallel concepts, and how far would this improve on
what the Polycute language offers?

Much of the work we have presented has centred around
generating efficient parallel code for computationally ex-
pensive problems. We could likely improve some of our
results by improving the code generator, such as to ex-
ploit the fact that Polycute’s dynamic vectors are always

aligned to suit the processor’s SIMD instructions — par-
ticularly for tight parallelised loops.

Although we have designed Polycute with other paral-
lel applications in mind, such as server applications, we
would like to expand our research to include them more
directly. For example we would like to implement the
run time library support that would be required to al-
low the programmer to use blocking 10 while the library
transforms this into asynchronous IO, and explore the im-
plementation of a high performance server application in
Polycute.

6 Related Work

6.1 C

C provides primitives for working with threads by mak-
ing use of libraries — such as pthreads[8] — that provide
methods for creating threads, mutexes, and so on. The
sequential part of the code is written in a way that is intu-
itive to the programmer. Unfortunately, the parallelism
must be micro-managed and there is no opportunity for
the compiler to optimise. In this way, these languages are
akin to assembly in that there is very little abstraction of
the parallel primitives exposed by the operating system.
There are several consequences of hard-coding parallelism
in this way. Firstly, the implementation of parallelism is
error prone. Secondly, it is not possible for the compiler
to perform optimisation on the parallelism. Thirdly, this
approach leads to code that cannot be ported — it is not
possible to adapt a program written for a multi-core CPU
to run on a GPGPU without significant work.

6.2 OpenCL

OpenCL is a programming language designed for hetro-
geneous computing environments such as those offered by
desktop PCs with GPGPUs[10]. OpenCL requires the
programmer to separate the parallel code from the se-
quential code. It supports data types that are appropri-
ate for SIMD operation, and presents a computing model
that is intuitive to the programmer. In OpenCL, the par-
allel code is represented as a kernel that is executed many
times, differing only by a global ID (which may be used
for example, to calculate an index into a large array).
This is a much higher-level representation of parallelism,
and permits portability between different systems. Unfor-
tunately, this separates out the parallel part of the code
from the sequential to too great an extent. It becomes
difficult to write programs that share code and ideas be-
tween the sequential and parallel component. Arguments
to kernels are represented in the sequential code as library
calls that add a single argument to the end of a list of ar-
guments. This makes it very difficult for the compiler to
check this for correctness in any case, and impossible in
the general case. It is hard for the compiler to perform
optimisations that require changes of both the parallel

13

code and the sequential code. For example, AMD’s com-
piler does not optimise executions of a kernel on a single
data item into an equivalent SIMD or loop based kernel,
as this would require changing the sequential code to cre-
ate fewer work items, and changing the kernel to operate
on more work items. Hence the programmer is forced to
hand-optimise this aspect of the code in order to prevent
the performance from being inferior to that of a sequential
implementation.

6.3 OpenMP

Languages such as OpenMP work by extending an
existing language, in this case C, C++, or Fortran.
OpenMP allows the programmer to annotate the code
with pragmas that alter the semantics of some of the
constructs to include parallelism and information about
shared memory access. Like OpenCL, OpenMP fits a pro-
grammer’s intuition well, but compilers find it hard to
perform optimisations on the parallelism. Additionally,
since OpenMP is an extension of an existing language,
it is limited to semantics compatible with the original.
OpenMP also lacks a more powerful set of concepts that
would allow for easy use of GPGPUs where there is no
global shared memory.

6.4 Cilk

The Cilk programming language has the keywords spawn
and sync[l]. A function call may be prefixed with the
spawn keyword. This instructs the compiler that the
function call may be run in parallel with other executing
code. The sync keyword instructs the compiler to wait
until all functions that are currently executing in parallel
finish executing.

6.5 X10

X10 is a language that is designed for a similar comput-
ing environment to that envisaged by us — a cluster-like
environment where processors may or may not have ac-
cess to shared memory [2]. It has the concept of places.
These can be thought of as a single machine in a cluster
of machines — with its own memory, and its own processor
cores. Items of data belong to a single place, where this
data may be accessed in sequential code. Items in a place
other than that on which the current thread is execut-
ing may only be accessed asynchronously. X10 supports
spawning and management of new threads with asynch
and finish concepts that are similar in nature to Cilk’s
spawn and sync. X10 also supports atomic, which pre-
vents other threads from executing at the same time as
the atomic thread. These concepts are powerful, however
X10’s concept of places forces the programmer to make
decisions about the location of data within the computer
cluster, rather than allowing the compiler to optimise this.

7 Conclusions

We have designed an imperative programming language
that allows programmers to represent the paralellism of
their programs using concepts that extend familiar ones,
such as control flow and data types. We explored some
of the problems that result from such a language, and
present solutions to them. We have produced a compiler
that implements much of our language, though this is in-
complete The language design offers scope for features
such as NUMA targets that are currently not supported
by the compiler. We feel that the language we have de-
signed fits in well with programmers’ existing intuitions,
and that efficient parallel code can be generated from it.
The language presented in this report would be a good
candidate to improve upon in future work.

Acknowledgements

I would like to thank the following people:
e Alan Mycroft for supervising this project
e Jason Bell for the example given in Listing 11

e Chris Kitching for proof reading

References

[1] Robert Blumofe, Christopher Joerg, Bradley Kusz-
maul, Charles Leiserson, Keith Randall, and Yuli
Zhou. Cilk: An efficient multithreaded runtime sys-
tem. Proceedings of the fifth ACM SIGPLAN sympo-
sium on Principles and practice of parallel program-
ming, pages 207-216, 1995.

[2] Philippe Charles, Christopher Donawa, Kemal
Ebcioglu, Christian Grothoff, Allan Kielstra,
Christoph von Praun, Vijay Saraswat, and Vivek
Sarkar. X10: An object-oriented approach to
non-uniform cluster computing. Proceedings of the
20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and ap-
plications, pages 519-538, 2005.

[3] Robert Ennals, Richard Sharp, and Alan Mycroft.
Task partitioning for multi-core network processors.
Compiler Construction, Joint European Conferences
on Theory and Practice of Software, pages 76-90,
2005.

[4] Xinyu Feng. Local rely-guarantee reasoning. Proceed-
ings of the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 315-327, 2009.

[5] Charles Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, pages 576—
580, 1969.

14

[6] Charles Hoare. Communicating sequential processes.
Communications of the ACM, pages 666-677, 1978.

[7] Mark Moir and Nir Shavit. Concurrent data struc-
tures.

[8] Frank Mueller. Pthreads library interface. 1995.

[9] Alan Mycroft. Isolation types and multi-core ar-
chitectures. Proceedings of the 2011 international
conference on Formal Verification of Object-Oriented
Software, pages 33-48, 2011.

[10] John Stone, David Gohara, and Guochun Shi.
Opencl: A parallel programming standard for hetro-
geneous computing systems. IEEE Design and Test,

pages 6673, 2010.

	The Polycute Language
	Notation and Language Concepts
	For
	Spawn and Sync
	Lock and Atomic
	Dynamic Vector Type

	Conceptual Implementation
	Spawn and Sync
	Lock and Atomic
	Dynamic Vector Type
	Compiler Architecture

	Efficient Implementation and Optimisation
	Spawn and Sync
	Dynamic Vector Type

	Evaluation
	Mandelbrot Set
	Merge Sort
	RBM

	Further Work
	Related Work
	C
	OpenCL
	OpenMP
	Cilk
	X10

	Conclusions

